PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2007 | 66 | 1 |

Tytuł artykułu

A morphometric study of the amygdala in the rabbit

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Volumetric measurements of the individual nuclei in the amygdala (CA) of the rabbit reveal poor development of the basolateral (BL) and lateral olfactory tract (NLOT) and medial (ME) nuclei. On the other hand, the volumes of the lateral (LA), basomedial (BM), central (CE) and cortical (CO) nuclei are remarkable in this species. A comparison of the densities of neurons in the individual nuclei with the mean numerical density of cells in the rabbit CA indicates that the densities of neurons in LA, BL and BM are significantly lower than the mean (p < 0.05), whereas in CE, CO, ME and NLOT these values are significantly higher than the mean (p < 0.05). It should be noted, however, that of all the nuclei studied those in CE show the greatest similarity in density to CA as a whole. To some extent a similar division of the rabbit CA may be made using the size parameters of the amygdaloid neurons as a marker. The large neurons populate less densely organised CA areas such as LA, BL and BM, whereas the small cells create ME and NLOT, where the neurons are densely arranged. The CE and CO occupy intermediate positions, with the neurons similar in size to the mean for the total rabbit CA. These morphometric data from CA in the rabbit, when compared with the similar data for the common shrew and guinea pig (see our previous papers), lead to the conclusion that the amygdalae in all three species are very similar with respect to the distribution of neurons in relation to density and size and that, when volumetric measurements are taken into account, CA in the rabbit is much more similar to that of the guinea pig than that of the common shrew.

Wydawca

-

Czasopismo

Rocznik

Tom

66

Numer

1

Opis fizyczny

p.44-53,fig.,ref.

Twórcy

autor
  • University of Warmia and Mazuria, Plac Lodzki 3, 10-767 Olsztyn, Poland
autor
autor
autor

Bibliografia

  • 1. Breathnach AS, Goldby F (1988) The amygdaloid nuclei, hippocampus and other parts of the rhinencephalon in the porpoise (Phocaena phocaena). Anatomy, 88: 267–288.
  • 2. Bookstein FL (1986) Size and shape spaces for landmark data in two dimensions. Statistical Science, 1: 181–222.
  • 3. Canteras NS, Swanson LW (1992) Projections of the ventral subiculum to the amygdala, septum and hypothalamus: A PHAL anterograde track-tracing study in the rat. J Comp Neurol, 324: 180–194.
  • 4. Crosby EC, Humphrey T (1941) Studies on the vertebrate telencephalon. II. The nuclear pattern of olfactory nucleus, tuberculum olfactorium and the amygdaloid complex in adult man. J Comp Neurol, 74: 309–352.
  • 5. Crosby EC, Humphrey T (1944) Studies on the vertebrate telencephalon. III. The amygdaloid complex in the shrew (Blarina brevicauda). J Comp Neurol, 81: 285–305.
  • 6. Dziewiątkowski J, Berdel B, Kowiański P, Kubasik-Juraniec J, Bobek-Bilewicz B, Moryś J (1998) The amygdaloid body of the rabbit. A morphometric study using image analyser. Folia Morphol, 57: 93–103.
  • 7. Gower JC (1975) Generalized Procrustes analysis. Psychometrika, 40: 33–51.
  • 8. Gundersen HJG, Jensen EB (1987) The efficiency of systematic sampling in sterology and its prediction. J Microsc, 147, 229–263.
  • 9. Humphrey T (1936) The telencephalon of the bat. I. The non-cortical nuclear masses and certain pertinent fiber connections. J Comp Neurol, 65: 603–711.
  • 10. Jagalska-Majewska H, Luczynska A, Wojcik S, Dziewiatkowski J, Kurlapska R, Morys J (2003) Developmental changes of morphology in the basolateral complex of the rabbit amygdala. Folia Morphol, 62: 227–230.
  • 11. Jagalska-Majewska H, Wojcik S, Dziewiatkowski J, Luczynska A, Kurlapska R, Morys J (2003) Postnatal development of the basolateral complex of rabbit amygdala: a stereological and histochemical study. J Anat, 203: 513–521.
  • 12. Kevetter GA, Winans SS (1981) Connections of the corticomedial amygdala in the golden hamster. I. Efferents of the “vomeronasal amygdala”. J Comp Neurol, 197: 81–98.
  • 13. Kevetter GA, Winans SS (1981) Connections of the corticomedial amygdala in the golden hamster. II. Efferents of the “olfactory amygdala”. J Comp Neurol, 197: 99–111.
  • 14. Kowiańska J (1997) Anatomia porównawcza przedmurza wybranych gatunków ssaków. Akademia Medyczna, Gdańsk, pp. 1–107.
  • 15. Krettek JE, Price JL (1978) A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections. J Comp Neurol, 178: 255–280.
  • 16. LeDoux JE, Farb C, Ruggiero DA (1990) Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J Neurosci, 10: 1043–1054.
  • 17. LeDoux JE, Cicchetti P, Xagoranis A, Romanski LM (1990) The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci, 10: 1062–1069.
  • 18. LeDoux JE, Farb C, Ruggiero DA (1991) Overlapping projections to the amygdala and striatum from auditory processing areas of the thalamus and cortex. Neurosci Lett, 134: 139–144.
  • 19. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci, 23: 155–184.
  • 20. Mayhew TM (1992) A review of recent advances in stereology for quantifying neural structures. J Neurocytol, 21: 313–328
  • 21. Majidishad P, Pelli DG, LeDoux JE. (1996) Disruption of fear conditioning to contextual stimuli but not to a tone by lesions of the accessory basal nucleus of the amygdala. Soc Neurosci Abstr, 22: 1116.
  • 22. Maren S, Fanselow MS (1995) Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulation in vivo. J Neurosci, 15: 7548–7564.
  • 23. Mascagni F, McDonald AJ, Coleman JR (1993) Corticoamygdaloid and corticocortical projections of the rat temporal cortex: a Phaseolus vulgaris leucoagglutinin study. Neuroscience, 57: 697–715.
  • 24. McDonald AJ, Jackson TR (1987) Amygdaloid connections with posterior insular and temporal cortical areas in the rat. J Comp Neurol, 262: 59–77.
  • 25. McDonald AJ, Mascagni F, Guo L (1996) Projections of the medial and lateral prefrontal cortices to the amygdala: A Phaselous vulgaris leucoaggulutinin study in the rat. Neuroscience, 71: 55–75.
  • 26. Maksymowicz K (1963) Amygdaloid complex of the dog. Acta Biol Exp Vars, 23: 63–73.
  • 27. Morgane PJ, McFarland WL, Jacobs MS (1982) The limbic lobe of the dolphin brain: a quantitative cytoarchitectonic study. J. Hirnforsch, 23: 465–552.
  • 28. Pitkänen A, Jolkkonen E, Kemppainen S (2000) Anatomical heterogeneity of the rat amygdaloid complex. Folia Morphol, 59: 1–23.
  • 29. Rohlf FJ, Slice DE (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zool, 39: 40–59.
  • 30. Rohlf FJ (1999) Shape statistics: Procrustes superimpositions and tangent spaces. J Classification, 16: 197–223.
  • 31. Romanski LM, LeDoux JE (1993) Information cascade from primary auditory cortex to the amygdala: corticocortical and corticoamygdaloid projections of temporal cortex in the rat. Cereb Cortex, 3: 515–532.
  • 32. Równiak M, Szteyn S, Robak A (2004) A morphometric study of the amygdala in the common shrew. Folia Morphol, 63: 165–176.
  • 33. Równiak M, Szteyn S, Robak A (2005) A morphometric study of the amygdala in the guinea pig. Folia Morphol, 64: 165–176.
  • 34. Salter CF (1975) A morphological study of the lateral olfactory areas of the telencephalon in the Mongolian Gerbil, Meriones unguiculatus. J Hirnforsh, 16: 223–244.
  • 35. Stephan H, Andy OJ (1977) Quantitative comparisons of the amygdala in insectivores and primates. Acta Anat, 98: 130–153
  • 36. Stephan H, Frahm H, Baron G (1987) Comparisons of brain structure volumes in insectivora and primates. VII amygdaloid body. J Hirnforsh, 28: 571–584.
  • 37. Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci, 21: 323–331.
  • 38. Śmiałowski A (1965) Amygdaloid complex of the macaque. Acta Biol Exp Vars, 25: 77–89.
  • 39. Turner BH, Zimmer J (1984) The architecture and some of the interconnections of the rat’s amygdala and lateral periallocortex. J Comp Neurol, 227: 540–557.
  • 40. West MJ, Gundersen HJG (1990) Unbiased sterological estimation of the number of neurons in the human hippocampus. J Comp Neurol, 296: 1–22.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-659692b6-7d87-404b-89b6-d6c1398fe596
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.