Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 19 | 2 |
Tytuł artykułu

Cadmium effect on hydrogen peroxide, glutathione and phytochelatins levels in potato tuber

Warianty tytułu
Języki publikacji
Short-term treatment of potato tuber (Solanum tuberosum L.) dises with CdCl₂ (1mM) induced an oxidative stress, manifested by higher levels of H₂O₂, and activated the synthesis of phytochclatins ((γ-Glu-Cys)n-Gly): PC₂, PC₃ and PC₄. If in the tissues with a lower GSH level, the oxidative stress was induced by treatment with 3-aminotriazol (AT), or with AT and H₂O₂, the elevation of H₂O₂ and GSH levels and then some accumulation of thiols, including PC₂, PC₃ and PC₄, were observed. However, this increase of PC concentration was considerably lower when compared with the effects brought about by Cd⁺² treatment. If such a procedure of evoking subsequent moderate oxidative stress in tissues preceded Cd-treatment, a marked limitation of PC synthesis was observed. The presented results support the role of H₂O₂ as the second messenger in activating GSH synthesis and thus suggest a possibility of redox type regulation mechanism of PCs synthesis.
Opis fizyczny
  • Agricultural University, Wolynska 35, 60-637 Poznan, Poland
  • Apostol I., Heinstein, P.F. and Low P.S. 1989. Rapid stimulation of an oxidative burst elicitation of cultured plant cells. Plant Physiol. 90: 109–116.
  • Becana M., P. Aparcio-Tejo J.J. Irigoyen and M. Sanchez-Diaz 1986. Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiol. 82: 1169–1171.
  • Delhaize E., P.J. Jackson L.D. Lujan and N.J. Robinson 1989. Poly(γ-glutamylcysteinyl) glycine synthesis in Datura innoxia and binding with cadmium: role in cadmium tolerance. Plant Physiol. 89: 700–706.
  • Ernst W.H.O., J.A.C. Verkleij and H. Schat 1992. Metal tolerance in plants. Acta Bot. Neerl. 41: 229–248.
  • Fry S.C. 1995. Polysaccharide-modifying enzymes in the plant cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 497–520.
  • Fry S.C., Miller J.G. 1989. H2O2 — dependent cross-linking of feruloyl-pectines in vivo. Food Hydrocolloids 1: 395–397.
  • Fujita M, and T. Kawanishi.1987. Cd-binding complexes from the root tissues of various higher plants cultivated in Cd+2-containing medium. Plant Cell Physiol. 28: 379–382.
  • Goa J. 1953. A micro biuret method for protein determination. Scand. J. Clin. Lab. 5: 218–222.
  • Griffith O.W. and A. Meister 1979. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n butyl homocysteine sulfoximine). J. Biol. Chem. 254: 7558–7560.
  • Grill E., Zenk M.H. Winnacker E-L. 1985 Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230: 674–676.
  • Grill E., S. Löffler, E-L. Winnacker, M.H. Zenk 1989. Phytochelatins, the heavy-metal binding peptides of plants, are synthesized from Gluthatione by a specific γ-glutamylcysteine dipeptydyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci. USA 86: 6838–6842.
  • Gupta C.G., and P.B. Goldsbrough 1991. Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines. Plant Physiol. 97: 306–312.
  • Halliwell B. 1978. Lignin synthesis: the generation of hydrogen peroxide and superoxide by hors redish peroxide and its stimulation by manganese (II) and phenols. Planta 140: 81–88.
  • Harmens H., P.R. Den Hartog, W.M. Ten Bookum and J.A.C. Verkleij 1993. Increase zinc tolerance in Silene vulgaris (Moech) Garcke is not due to increased production of phytochelatins. Plant Physiol. 103: 1305–1309.
  • Heinrickson R.L. and S.C. Meredith 1984. Amino acid analysis by reverse-phase high-performance liquid chromatoraphy: precolumn derivatization with phenylisothiocyanate. Anal. Biochem. 136: 65–74.
  • Hirs C.H.W. 1967. Determination of cysteine as cysteic acid. Methods Enzymol. 11: 59–62.
  • Howden R., P.B. Goldsbrough, C.R. Andersen and C.S. Cobbett 1995. Cadmium-sensitive, cad-1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol. 107: 1059–1066.
  • May M.J., and C.J. Leaver 1993. Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures. Plant Physiol. 103: 621–627.
  • Miszalski Z., Botton B., Turnau K. 1996. New SOD isoform in Rhizopogon roseolus (Corda in Sturm) in the presence of cadmium. Acta Physiol. Plant. 18: 147–151.
  • Monk L.S., Fagerstedt K.V., Crawford M.M. 1989. Oxygen toxity and superoxide dismutase as an antioxidant in physiological stress. Physiol. Plant. 76: 456–459.
  • Neumann D., O. Lichtenberger, D. Günther, K. Tschiersch and L. Nover 1994. Heat-shock induce heavy-metal tolerance in higher plants. Planta 194: 360–367.
  • Prasad T.K., M.D. Anderson, B.A. Martin and C.R. Stewart 1994. Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 6: 65–74.
  • Ramasarma T. 1982. Generation of H2O2 in biomembranes. Biochim. Biophys. Acta 694: 69–93.
  • Rauser W.E. 1995. Phytochelatins and related peptides. Plant Physiol. 109: 1141–1149.
  • Rauser W.E., R. Schupp and H. Rennenberg 1991. Cysteine, γ-glutamylcysteine, glutathione levels in maize seedlings. Plant Physiol. 97: 128–138.
  • Reese N.R., Wagner G.J. 1987. Properties of tobacco (Nicotiana tabacum) cadmium-binding peptide(s). Biochem. J. 241: 641–647.
  • Robinson N.J., Jackson P.J. 1986. Metallothionein-like metal complexes in angiosperms: their structure and function. Physiol. Plant. 37: 499–506.
  • Rűegsegger A., D. Schmutz and C. Brunold 1990. Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol. 93: 1579–1584.
  • Rűegsegger, A. and C. Brunold. 1992. Effect of cadmium on γ-glutamylcysteine synthesis in maize seedlings. Plant Physiol. 99: 428–433.
  • Scandalios J.G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101, 7–12.
  • Showalter A.M. 1993. Structure and function of plant cell wall proteins. Plant Cell, 5; 9–23.
  • Smith I.K. 1985. Stimulation of glutathione synthesis in photorespiring plants by catalase inhibitor. Plant Physiol. 79: 1044–1047.
  • Somashekaraiah B.V., Padmaja K. and Prasad A.R.K. 1992. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorophyll degradation. Physiol. Plant. 85: 85–89.
  • Steffens J.C., D.F. Hunt and B.G. Williams 1986. Accumulation of non-protein metal- binding polypeptides (γ-glutamylcysteinyl)n -glycine in selected cadmium-resistant tomato cells. J. Biol. Chem. 261: 13879–13882.
  • Stroiński A., J. Floryszak-Wieczorek and A. Woźny 1990. Effects of cadmium on the host- pathogen system. I. Alterations of potato leaves and Phytophthora infestans relations. Biochem. Physiol. Pflanzen 186: 43–54.
  • Stroiński A., A. Woźny and J. Floryszak-Wieczorek 1990. Effects of cadmium on the host-pathogen system. II. Alterations of potato tuber and Phytophthora infestans relations. Biochem. Physiol. Pflanzen 186: 229–238.
  • Stroiński A. and H. Bandurska 1996. Proceedings of Conference: Ekofizjologiczne aspekty reakcji roślin na działanie abiotycznych czynników stresowych, Eds. S. Grzesiak and Z. Miszalski, pp 191–198 (English abstract), Kraków, 1996. Kraków.
  • Stroiński, A, and M Kozłowska 1997. Cadmium-induced oxidative stress in potato tuber. Acta Soc. Bot. Pol. 66: in print.
  • Sutherland M.W. 1991. The generation of oxygen radicals during host plant responses to infection. J. Plant Pathol. 39: 79–93.
  • Tukendorf A. and W.E. Rauser 1990. Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Science 70: 155–166.
  • Vera-Estrella R., E. Blumwald and V.J. Higgins 1992. Effect of specific elicitors of Cladosporium fulvum on tomato suspension cells. Plant Physiol. 99: 1208–1215.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.