PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 05 | 2 |

Tytuł artykułu

Ribosome biogenesis and nucleolar function in yeast Saccharomyces cerevisiae

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This review provides an overview of the current knowledge of ribosome biogenesis, nucleolus structure and function and protein traffic into and out of the nucleus, with emphasis on the potential of yeast Saccharomyces cerevisiae as a model organism.

Wydawca

-

Rocznik

Tom

05

Numer

2

Opis fizyczny

p.191-206,fig.

Twórcy

autor
  • Polish Academy of Sciences, 5A Pawinskiego Str., 02-106 Warsaw, Poland
autor

Bibliografia

  • 1. Warner, J. R. The economic of ribosome biosynthesis in yeast. Trends Biol. Sci. 24 (1999) 437-440.
  • 2. Warner, J. R. Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol. Rev. 53 (1989) 256-71.
  • 3. Lucchini, R. and Sogo, J. M. Chromatin structure and transcriptional activity around the replication forks arrested at the 3' end of the yeast rRNA genes. Mol. Cell. Biol. 14 (1994) 318-326.
  • 4. Brand, R. C., Klootwijk, J., van Steenbergen, T. J. M., de Kok, A. J. and Planta, R. J. Secondary methylation of yeast ribosomal precursor RNA. Eur. J. Biochem. 75 (1977) 311-318.
  • 5. Samarsky, D. A. and Fournier, M. J. A comprehensive database for the small nucleolar RNAs from Saccharomyces cerevisiae. Nucleic Acids Res. 27 (1999) 161-164.
  • 6. Tollervey, D. and Kiss, T. Function and synthesis of small nucleolar RNAs. Curr. Opin. Cell. Biol. 9 (1997) 337-342.
  • 7. Smith, C. M. and Steitz, J. A. Sno storm in the nucleolus: new roles for myriad small RNPs. Cell 89 (1997) 669-672.
  • 8. Scheer, U. and Weisenberger, D. The nucleolus. Curr. Opin. Cell. Biol. 6 (1994) 354-359.
  • 9. Scheer, U. and Hock, R. Structure and function of the nucleolus. Curr. Opin. Cell. Biol. 11 (1999) 385-390.
  • 10. Ginisty, H., Sicard, H., Roger, B. and Bouvet, P. Structure and functions of nucleolin. J. Cell Sci. 112 (1999) 761-772.
  • 11. Tollervey, D., Lehtonen, H., Carmo-Fonesca, M. and Hurt, E. C. The small nucleolar RNP protein NOP1 (fibrillarin) is required for pre r-RNA processing in yeast. EMBO J. 10 (1991) 573-583.
  • 12. Savino, T. M, Bastos, R., Jansen, E. and Hernandez-Verdun, D. The nucleolar antigen Nop52, the human homologue of the yeast ribosomal RNA processing RRP1, is recruited at the late stages of nucleogenesis. J. Cell. Sci. 112 (1999) 1889-1900.
  • 13. Girard, J. P., Lehtonen, H., Caizergues-Ferrer, M., Amalric, F. and Tollervey, D. Garl is an essential small nucleolar RNP protein required for pr-rRNA processing in yeast. EMBO J. 11 (1992) 673-682.
  • 14. Leger-Silvestre, I., Trumtel, S., Noaillac-Depeyre, J. and Gas, N. Functional compartmentalization of the nucleus in the budding yeast Saccharomyces cerevisiae. Chromosoma 108 (1999) 103-113.
  • 15. Garcia, S. N. and Pillus, L. Net Results of Nucleolar Dynamics. Cell 97 (1999) 825-828.
  • 16. Visintin, R., Hwang, E. S. and Amon, A. Cif1 prevents premature exit from mitosos by anchoring Cdcl4 phosphatase in the nucleolus. Nature 398 (1999) 818-823.
  • 17. Smith, J. S. and Boeke, J. D. An unusual form of transcriptional silencing in yeast ribosomal RNA genes. Genes Dev. 11 (1997) 241-254.
  • 18. Gotta, M., Strahl-Bolsinger, S., Renauld, H., Laroche, T., Kennedy, B. K., Grunstein, M. and Gasser, S. M. Localization of Sir2p: the nucleolus as a compartment for silent information regulators. EMBO J. 16 (1997) 3243-3255.
  • 19. Sinclair, D. A., Mills, K. and Guarente, L. Molecular mechanism of yeast aging. Trends Biochem. Sci. 23 (1998) 131-134.
  • 20. Pederson, T. The plurifunctional nucleolus. Nuc. Ac. Res. 26 (1998) 3871-3876.
  • 21. Shaw, P. J. and Jordan, E. G. The nucleolus. Ann. Rev. Cell Dev. Biol. 11 (1995) 93-121.
  • 22. Dundr, M. and Olson, M. O. Partially processed pre-rRNA is preserved in association with processing components in nucleolus-derived foci during mitosis. Mol. Biol. Cell 9 (1998) 2407-2422.
  • 23. Nierras, C. R., Liebman, S. W. and Warner, J. R. Does Saccharomyces need an organized nucleolus? Chromosoma 105 (1997) 444-451.
  • 24. Karpen, G. H., Schaefer, J. E. and Laird, C. D. A Drosophila rRNA gene located in euchromatin is active in transcription and nucleolus formation. Genes Dev. 2 (1988) 1745-1763.
  • 25. Oakes, M., Aris, J. P., Brockenbrough, J. S., Wai, H., Vu, L. and Nomura, M. Mutational analysis of the structure and localization of the nucleolus in the yeast Saccharomyces cerevisiae. J. Cell Biol. 143 (1998) 23-34.
  • 26. Carotenuto, R., Maturi, G., Infante, V., Capriglione, T., Petrucci, T. C. and Campanella, C. A novel protein cross-reacting with antibodies against spectrin is localised in the nucleoli of amphibian oocytes. J. Cell Sci. 110 (1997) 2683-2690.
  • 27. Bucci, M. and Wente, S. R. A novel fluorescence-based genetic strategy, identifies mutants of Saccharomyces cerevisiae defective for nuclear pore complex assembly. Mol. Biol. Cell 9 (1998) 2439-2461.
  • 28. Doye, V. and Hurt, E. From nucleoporins to nuclear pore complexes. Curr Opin. Cell Biol. 9 (1997) 401-411.
  • 29. Moroianu, J. Distinct nuclear import and export pathways mediated by members of the karyopherin beta family. J. Cell Biochem. 70 (1998) 231-239.
  • 30. Pemberton, L. F., Rosenblum, J. S. and Blobel, G. (1997). A distinct and parallel pathway for the nuclear import of a mRNA- binding protein. J. Cell Biol. 139: 1645-1653.
  • 31. Strambio-de-Castilla, C., Blobel, G. and Rout, M. P. Proteins connecting the nuclear pore complex with the nuclear interior. J. Cell Biol. 144 (1999) 839-855.
  • 32. Sebastian, J., Mian, F. and Halvorson, H. O. Effect of the growth rate on the level of the DNA-dependent RNA polymerases in Saccharomyces cerevisiae. FEBS Letters 34 (1973) 159-162.
  • 33. Keener, J., Josatis, C. A., Dodd, J. A. and Nomura, M. Reconstitution of yeast polymerase I transcription in vitro from purified componnts. TATA binding protein is not required for basal transcription. J. Biol. Chem. 273 (1998) 33795-33802.
  • 34. Holstege, F. C. P. and Young, R. A. Transcriptional regulation: contending with complexity. Proc. Natl. Acad. Sci. USA 96 (1999) 2-4
  • 35. Waldron, C. and Lacroute, F. Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J. Bacteriol. 122 (1975) 855-865.
  • 36. Waldron, C. Synthesis of ribosomal and transfer ribonucleic acids in yeast during a nutritional shift-up. J. Gen Microbiol. 98 (1977) 215-221.
  • 37. Kief, D. R. and Warner, J. R. Hierarchy of elements regulating synthesis of ribosomal proteins in Saccharomyces cerevisiae. Mol. Cell Biol. 1 (1981) 1016-1023.
  • 38. Kief, D. R. and Warner, J. R. Coordinate control of syntheses of ribosomal ribonucleic acid and ribosomal proteins during nutritional shift-up in Saccharomyces cerevisiae. Mol. Cell Biol, 1 (1981) 1007-1015.
  • 39. Ju, Q. and Warner, J. R. Ribosome synthesis during the growth cycle of Saccharomyces cerevisiae. Yeast 10 151-157, Published erratum appears in Yeast 10 (1994) 979-980.
  • 40. Zaragoza, D., Ghavidel, A., Heitman, J. and Schultz, M. C. Rapamycin induces the GO program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol Cell Biol. 18 (1998) 4463-4470.
  • 41. Powers, T., Walter, P. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol. Biol. Cell 10 (1999) 987-1000.
  • 42. Klein, C. and Struhl, K. Protein kinase A mediates growth-regulated expression of yeast ribosomal protein genes by modulating RAP1 transcriptional activity. Mol. Cell Biol. 14 (1994) 1920-1928.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-638f1f1e-97b7-4dd1-9f1b-5e49277bddc1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.