PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 45 | 2 |

Tytuł artykułu

Hydrophobic nature of mammalian ceramide glycanases: Purified from rabbit and rat mammary tissues

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The ceramide glycanase (CGase) activities, which cleave the intact oligosaccharide chain and the ceramide moiety of a glycosphingolipid, have been characterized from two mammalian sources. The enzymatic activities are almost comparable in rabbit and rat mammary tissues. The majority of the activities has been concentrated in the soluble fraction which could be partially purified using hydrophobic columns. The rabbit mammary ceramide glycanase activity has been purified up to 1438-fold using ion exchange and hydrophobic columns in tandem. The purified protein exhibited a molecular mass of 54 kDa which could be immunostained on the Western blot with clam anti-CGase polyclonal antibody. In addition, a 98 kDa protein also exhibited positive immunostain in a successive purified fraction with that antibody and is under investigation. The requirement for the optimal enzymatic activities are similar for both rabbit and rat CGase activities. The CGase activity requires the presence of detergent for optimal activity but is not dependent on the presence of any divalent cations. However, Hg2+, Zn2+, and Cu2+ are inhibitory to the enzymatic activities. It has been observed that rat as well as rabbit CGases are inhibited by both D- and L-PDMP (1-phenyl-2-decanoylamino-3-morpholino-1-propanol.HCl) and its higher analogue PPMP (1-phenyl-2-palmitoylamino-3-morpholino-1-propanol.HCl). Alkyl amines containing C12 and higher chains are also found to inhibit both rat and rabbit CGase activities. Substantial levels of CGase activities have also been observed in various human tumor cells as well as in developing avian brains. These observations are significant in view of the recent findings that ceramide, which is one of the enzymatic reaction products of CGase activity, is mediating different cellular events like signal transduction and apoptosis. The role of this enzyme in development, metastasis and cellular regulation are anticipated.

Wydawca

-

Rocznik

Tom

45

Numer

2

Opis fizyczny

p.327-342,fig.

Twórcy

autor
  • University of Notre Dame, Notre Dame, IN 46556, USA
autor
autor
autor
autor

Bibliografia

  • 1. Hakomori, S. (1981) Glycosphingolipids in cel­lular interactions, differentiation and onco­genesis. AnniL Rev. Biochem. 50, 733-764.
  • 2. Hakomori, S. (1989) Abberantglycosylation in tumors and tumor-associated carbohydrate ant.igpns. Adv. Cancer Res. 52, 257 331.
  • 3. Livingstone. P., Natoli, E.J., Calves, M.J., Stockert, E., Oettgen, H.E. & Old. L.E. (1987) Vaccine containing purified GM2 gangliosides elicits GM2 antibody in melanoma patients. Proc. Natl, Acad. Sci. U.S.A. 84, 2911-2915.
  • 4. Hakomori, S. (1970) Cell-density dependent changes of glycolipid concentration in fibro­blast and loss of this response in virus trans­formed cells. Proc. Natl. Acad. Sci. U.S.A. 67, 1741-1747.
  • 5. Lowe, J.B., Stoolman, L.M., Nair, R.P., Larsen, R.D., Berhand, T.L. & Marks, R.M. (1990) ELAM-1 dependent cell adhesion to vascular endothelium determined by a trans- fected fucosyltransferase cDNA. Cell 63,475- .
  • 6. Phillips, M.L., Nudelman, E., Gaeta, F.C., Perex, M., Singhal, A.K., Hakomori, S.I. & Paulson, J.C. (1990) ELAM-1 mediates cell ad­hesion by recognition of a carbohydrate ligand, SA-Lex. Science 250, 1130-1132.
  • 7. Takada, A., Ohmori, K., Yoneda, T., Tsuyuoka, K., Hasegawa, A., Kiso, M. & Kannagi, R. (1993) Contribution of carbohydrate antigens SA-Lex and SA-Lex in adhesion of human can­cer cells to vascular endothelium. Cancer Res. 53, 354-361.
  • 8. Stroud, M.R., Handa, K., Salyan, M.E.K., Ito, K., Levery, S., Hakomori. S., Reinhold, B.B. & Reinhold, V. (1996) Monosialoganglioside of human myelogenous leukemia HL60 cells and normal human leukocyte: Characterization of E-selectin binding fractions and structural re­quirements for physiological binding to E- selectin. Biochemistry 35, 770-778.
  • 9. Hannun, Y.A. & Bell, R.M. (1989) Function of sphingolipid and sphingolipid breakdown products in cellular regulation. Science 243, 500-507.
  • 10. Hannun, Y.A. (1994) The sphingomyelin cycle and the second messenger function of cera- mide. J. BioL Chem. 2G9, 3120-3128.
  • 11. Hakomori, S-i. (1990) Bifunctional role of gly- cosphingolipids. Modulators for transmem­brane signaling and mediators for cellular in­teractions. J. Biol.Chem. 265, 18713-18716.
  • 12. Blakesley, V.A., Beiner-Johnson, D., Van Brocklyn, J.R., Rani, S., Shen-Orr, Z., Stan- nard, B.S., Spiegel, S. & LeRoith, D. (1997) Sphingosine-l-phosphate stimulates tyrosine phosphorylation of CrK. J. Biol Chem. 272, 16211-16215.
  • 13. Hannun, Y.A. & Obeid, L.M. (1994) Ceramide: An intracellular signal for apoptosis. Trends Biochem. Sci. 20, 73-77.
  • 14. Obeid, L.M., Linardic, C.M., Karolak, L.A. & Hannun, Y.A. (1993) Programmed cell death induced by ceramide. Science 259,1769-1771.
  • 15. Chatterjee, S. (1993) Neutral sphingomyeli­nase. Adv. Lipid Res. 26, 27-48.
  • 16. Kolesnick, R. & Golde, D.W. (1994) The sphin­gomyelin pathway in tumor necrosis factor and interleukin-1 signalling. Cell 77 325-328.
  • 17. Cai, Z., Bettaieb, A., Mahdani, N.E., Legres, L.G., Stancou, R., Masliah, J. & Chouaib, S. (1997) Alteration of the sphingomyelin/cera- mide pathway is associated with resistance of human breast carcinoma MCF7 cells to tumor necrosis factor-a-mediated cytotoxicity. J. BioL Chem. 272, 6918-6926.
  • 18. Basu, M., Girzadas, M., Dastgheib, S., Baker, J., Rossi, F., Radin, N.S. & Basu, S. (1997) Ce­ramide glycanase from rat mammary tissues: inhibition by PPMP (1>/I^) and its probable role in signal transduction. Ind. J. Biochem. Biophys. 34, 142-149.
  • 19. Ito, M. & Yamagata, T. (1986) A novel gly- cosphingolipid cleaving enzyme cleaves the linkage between the oligosaccharide and cera­mide of neutral and acidic GSLs. J. Biol. Chem. 261, 14278-14282.
  • 20.1to, M. & Yamagata, T. (1989) Endoglycocera- midase from Rhodococcus species G-74-2. Methods Enzymol. 179, 488-496.
  • 21. Li, S C., DeGasperi, R., Muldrey, J.E. & Li, Y.T. (1986) A unique GSLsplitting enzyme (ceramide glycanase) cleaves the linkage be­tween the oligosaccharide and ceramide. Bio- chem. Biophys. Res. Commun. 141, 346-352.
  • 22. Zhou, B., Li, S.-C., Laine, R., Huang, T.C. & Li, Y.T. (1989) Isolation and characterization of ceramide glycanase from the leech M. decora. J. Biol Chem. 264, 12272-12277.
  • 23. Li, Y.T. & Li, S.C. (1989) Ceramide glycanase from leech and earthworm. Methods Enzymol. 179, 479-487.
  • 24. Carter, B.Z., Li, S.C. & Li, Y.T. (1992) Cera­mide glycanase from earthworm, L. terrestris. Biochem. J. 285. 619-623.
  • 25. Basu, S.S., Dastghieb-Hosseini, S., Hoover, G., Li, Z. & Basu, S. (1994) Analysis of GSLs by FACE using CGase from hard shelled clam. Anal. Biochem. 222. 270-274.
  • 26. Dastghieb, S., Li, Z., Basu, M., Radin, N. & Basu, S. (1996) Hydrophobic nature of clam CGase and its inhibition by PPM P. FASEB J. 10. A1240.
  • 27. Ito, M. & Yamagata, T. (1989) Purification and characterization of GSL-specific endoglycosi- dase from a mutant strain of Rhodococcus spe­cies. J. Biol Chem. 264. 9510-9516.
  • 28. Westervelt, C.W., Hawcs, J.W., Das, K.K., Basu, M., Beutter, M.J., Shukla, A. & Basu. S. (1989) Studies on the degradation of gly- cosphingolipids by a soluble ceramide glyca­nase from rabbit mammary tissues. Glycocon- jugatc J. 6. 406.
  • 29. Shailubhai, K., Saxena, E.S., Balapure, A.K. & Vijay, I.K. (1990) Developmental regulation of glucosidase I, an enzyme involved in the proc­essing of asparagin-linked glycoproteins in rat mammary gland. J. Biol Chem. 265, 9701- 9706.
  • 30. Basu, S., Basu, M.f Moskal. J.R., Chien, J.L. & Gardner, D.A. (1976) Biosynthesis in vitro of neutral GSLs in normal tissues and cultured cells; in Glycolipid Methodology (Witting, L.A., ed.) pp. 123-139, Am. Oil Chemists' Soc. Press, Champaign, IL, U.S.A.
  • 31. Chein, J.L., Li, S.C., Laine, R.A. & Li, Y.T. (1978) Characterization of gangliosides from bovine erythrocyte membranes. J. Biol Chem. 253, 4031-4035.
  • 32. Li, S.C. & Li, Y.T. (1972)£
  • 33. Basu. M., Basu, S., Stoffyn. A. & Stoffyn, P. (1982) Biosynthesis in vitro of NeuAccr2- 3nLcOse4Cer by a sialyltransferase from em­bryonic chicken brain. J. Biol Chem. 257, 12765-12769.
  • 34. Basu, M., De, T., Das, K.K., Kyle, J.W., Chon, H.C., Schaeper, R.J. & Basu, S. (1987) Meth­ods Enzymol 138, 575-607.
  • 35. Schwarzmann, G. & Sandhoff, K. (1987) Lyso- gangliosides: Synthesis and use in preparing labeled gangliosides. Methods Enzymol 138, 138-160.
  • 36. Laemmli, U. (1970) Cleavage of structural pro­teins during the assembly of bacteriophage T4. Nature 227, 680-685.
  • 37. Crambach, A., Reisfold, R.A., Wykoff, M. & Zaccari, Z. (1967) A procedure for rapid and sensitive staining of proteins fractionated by polyacrylamide gel electrophoresis. Anal. Bio­chem. 20, 150-156.
  • 38. Nakamura, K. & Handa, S. (1984) Coomassie Brilliant Blue staining of lipids on thin-layer plates. Anal Biochem. 142, 406-410.
  • 39. Basu, S., Ghosh, S., Basu, M., Hawes, J.W., Das, K.K., Zhang, B., Li, Z., Weng, S. & Westervelt, C. (1990) Carbohydrate and hy- drophobic-carbohydrate recognition sites (CARS and HY-CARS) in solubilized glycosyl- transferases. IndI J. Biochem. Biophys. 27, 386-395.
  • 40. Basu, S., Keufman, B. & Roseman, S. (1973) Enzymatic synthesis of glucocerbroside by a glucosyltransferase from embryonic chicken brains. J. Biol Chem. 248, 1388-1394.
  • 41. Radin, N.S., Shyaman, J.A., & Inokuchi, J.-I. (1993) Metabolic effects of inhibiting glucosyl- ceramide synthesis with PDMP and other sub­strates. Adv. Lipid Res. 26, 183-213.
  • 42. Radin, N.S. & Inokuchi, J. (1991) Use of PDMP for the study of glycosphingolipid func­tion. lYends Glycosci. Glycotech. 3, 200- 213.
  • 43. Chatterjee, S., Cleveland, T., Shi, W-Y., Ino­kuchi, J. & Radin, N.S. (1996) Studies of the action of PDMP on GSL:glycosyltransferases and purified lactosylceramide synthetase. Gly- coconjugate J. 13, 481-486.
  • 44. Bielawska, A., Greenberg, M.S., Perry, D., Jay- adev, S., Shayman, J., McKay, C. & Hannun, Y A (1996) Myristolamino-phenyl-propanol as an inhibitor of ceramidase. J. Biol Chem. 271, 12646-12654.
  • 45. Calbiochem Biologies Note (1997) 23, No. 1.
  • 46. Basu, S., Kaufman, B.W. & Roseman, S. (1965) Conversion of Tay-Sachs ganglioside to monosialoganglioside by brain galactosyl- transferase. J. BioL Chem. 240, 4115-4117.
  • 47. Ghosh. S., Kyle, J.W., Dastgheib, S., Daussin, F., Li, Z. & Basu, S. (1995) Purification, prop­erties and immunological characterization of GalT-3 from embryonic chicken brains. Glyco- conjugateJ. 12, 838-847.
  • 48. Basu, S. (1991) Serendipity of ganglioside bio­synthesis: Pathway to CARS and HY-CARS glycosyltransferases. Glycobiology 1,469-475.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-61f3c367-4dfc-4475-9bc1-d94bebfc638b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.