PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 15 | 3 |

Tytuł artykułu

Sorptive behavior and kinetics of carbendazim in mineral soils

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Studies on adsorption, desorption and reaction kinetics of carbendazim in grey-brown podzolic soil derived from loamy sand (Albic Luvisls), grey-brown podzolic soil derived from silt (Haplic Luvisols) and brown soil derived from sandy clay loam (Haplic Cambisols) were carried out. Five concentrations of carbendazim (5.0, 3.8, 2.6, 1.0 and 0.2 µg · cm⁻³) in 0.01 mol · dm⁻³ CaCl₂ were used for the 24 h batch adsorption experiments; the desorption experiments were performed by replacing equilibrium solutions with 0.01 mol · dm⁻³ CaCl₂ and shaking again for the same period of time. The experimental data showed a good fit to the Freundlich equation (r² in the range 0.988-0.997 for adsorption and 0.980-0.999 for desorption). The values of KFads varied from 5.45 in the sandy to 11.81 in the loess soil, the KFdes from 7.82 in the sandy to 17.87 in the loamy soil; the 1/n values for adsorption and desorption were in the range 0.636-0.812. Adsorption/desorption kinetics were investigated for 1, 2, 4, 6, 8, 10, 24 and 48 h reaction times. The adsorp- tion process in all soils and the desorption process in sandy soil was time-dependent, initially proceeding quickly but within approximately one hour it slowed and ran slowly. useful models for the description of presented experimental kinetic data were the two-site model (r² in the range 0.727-0.994) and the pseudo second-order model (r² in the range 0.636-0.988).

Wydawca

-

Rocznik

Tom

15

Numer

3

Opis fizyczny

p.449-456,fig.,ref.

Twórcy

autor
  • University of Agriculture, Akademicka 15, 20-950 Lublin, Poland

Bibliografia

  • 1. CUPPEN J.G.M., VAN DEN BRINK P.J., CAMPS E., UIL K.F., BROCK T.C.M. Impact of the fungicide carbendazim on freshwater microcosms. I. Water quality, breakdown, of particulate organic matter and responses of macroinvertebrates. Aquat. Toxicol. 48, 233, 2000.
  • 2. JONES S.E., WILLIAMS D.J., HOLLIMAN P., TAYLOR N., BAUMANN J., FÖRSTER B.,VAN GESTEL C.A.M., RODRIGUES J.M.L. Ring-testing and Field-validation of a Terrestrial Model Ecosystem (TME) – An Instrument for Testing Potentially Harmful Substances: Fate of the Model Chemical Carbendazim. Ecotoxicol. 13, 29, 2004.
  • 3. VENEDIKIAN N., CHIOCCHIO V., MARTINEZ A., MENENDEZ A., OCAMPO J.A., GODEAS A. Influence of the fungicides carbendazim and chlorothalonil on spore germination, arbuscular mycorrhizal colonization and growth of soybean plants. Agrochimica. 43, 105, 1999.
  • 4. CHALAM A.V., SASIKALA C., RAMANA C.V., RAO P.R. Effect of pesticides on hydrogen metabolism of Rhodobacter sphaeroides and Rhodopseudomonas palustris. FEMS Microb. Ecol. 19, 1, 1996.
  • 5. AHARONSON N., KAFKAFI U. Adsorption of benzimidazole fungicides on montmorillonite and kaolinite clay surface. J. Agric. Food Chem. 23, 434, 1975.
  • 6. BERGLÖF T,, VAN DUNG T., KYLIN H., NILLSON I. Carbendazim sorption-desorption in Vietnamese soils. Chemosphere. 48, 267, 2002.
  • 7. DIOS CANCELA G., ROMERO TABOADA E., SANCHEZ-RASERO F. Carbendazim adsorption on montmorillonite, peat and soils. J. Soil Sci. 43, 99, 1992.
  • 8. CHIBA M., VERES D.F. HPLC method for simultaneous determination of residual benomyl and methyl 2-benzimidazole carbamate on apple foliage without cleanup. J. Assoc. Off Anal. Chem. 63, 1291, 1980.
  • 9. KIIGEMAGI U., INMAN R.D., MELLENTHIN W.M., DEINZER M.R. Residues of benomyl (determined as carbendazim) and captan in postharvest-treated pears in cold storage. J. Agric. Food Chem. 39, 400, 1991.
  • 10. NAKAI M., HESS R.A., MOORE B.J., GUTTROFF R.F., STRADER L.F., LINDER R.E. Acute and long-term effects of a single dose of the fungicide carbendazim (methyl 2-benzimidazole carbamate) on the male reproductive system in the rat. J. Androl. 13, 507, 1992.
  • 11. SARRIF A.M., ARCE G.T., KRAHN D.F., O’NEIL R.M., REYNOLDS V.L. Evaluation of carbendazim for gene mutations in the Salmonella/Ames plate-incorporation assay: the role of aminophenazine impurities. Mutat. Res. 321, 43, 1994.
  • 12. ABOUL-KASSIM T.A.T., SIMONEIT B.R.T. Pollutantsolid phase interactions: mechanism, chemistry and modeling. The handbook of environmental chemistry Vol. 5, Part E, Springer-Verlag, Berlin, Heidelberg, 2001.
  • 13. OECD. Adsorption-desorption using batch equilibrium method. OECD guideline for the testing of chemicals pp. 106, 2000.
  • 14. CHEUNG C.W., PORTER J.F., MCKAY G. Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Wat. Res. 35, 605, 2001.
  • 15. LAGERGREN S. Zur Theorie der sogenannten Adsorption gelöster Stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar. 24, 1, 1898.
  • 16. HO Y.S., MCKAY G. The sorption of lead(II) ions on peat. Wat. Res. 33, 578, 1999.
  • 17. HO Y.S., MCKAY G. Pseudo-second model for sorption processes. Process Biochem. 34, 451, 1999.
  • 18. SINGH A.K., PANDEYA S.B. Sorption and release of cadmium- fluvic acid complexes in sludge treated soils. Bioresource Technol. 66, 119, 1998.
  • 19. WILLIS B.G., WOODRUFF W.H., FRYSINGER J.R., MARGERUM D.W., PARDUE H.L. Simultaneous kinetic determination of mixtures by on-line regression analysis. Anal. Chem. 42, 1350, 1970.
  • 20. MCLAREN R.G., BACKES C.A., RATE A.W., SWIFT R.S. Cadmium and cobalt desorption kinetics from soil clays: effect of sorption period. Soil Sci. Soc. Am. J. 62, 332, 1998.
  • 21. BEULK E S., BROWN C.D. Evaluation of methods to derive pesticide degradation parameters for regulatory modelling. Biol. Fertil. Soils. 33, 558, 2001.
  • 22. BAILEY G.W., WHITE J.L. ROTHBERG T. Adsorption of organic herbicides by montmorillonite: role of pH and chemical character of adsorbate. Soil Sci. Soc. Am. Proc. 32, 222, 1968.
  • 23. WEBER W.J., MCGINLEY P.M., KATZ P.E. A distribution model for sorption by soils and sediments. I. Conceptual basis and equilibrium assessments. Environ. Sci. Technol. 26, 1955, 1992.
  • 24. MONKIEDJE A., SPITELLER M. Sorptive behavior of the phenylamide fungicides, mefenoxam and metalaxyl, and their acid metabolite in typical Cameroonian and German soils. Chemosphere. 49, 659, 2002.
  • 25. SUKUL P., SPITELLER M. Sorption study on metalaxyl in soils of different physico-chemical properties. Fresenius Environ. Bull. 9, 701, 2000.
  • 26. GRAHAM J.S., CONN J.S. Sorption of metribuzin and metolachlor in Alaska sub-arctic agricultural soils. Weed Sci. 40, 155, 1992.
  • 27. NEMETH-KONDA L., FÜLKEY Gy., MOROVJAN Gy., CSOKAN P. Sorption behaviour of acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil. Chemosphere. 49, 659, 2002.
  • 28. CELIS R., CORNEJO J., HERMOSIN M.C., KOSKINEN W.C. Sorption of atrazine and simazine by model associations of soil colloids. Soil Sci. Soc. Am. J. 62, 165, 1998.
  • 29. AHARONSON N., KAFKAFI U. Adsorption, mobility and persistence of thiabendazole and methyl 2-benzimidazolecarbamate in soils. J. Agric. Food Chem. 23, 720, 1975.
  • 30. INOU E M.H., OLIVEIRA R.S., REGITANO J.B., TORMENA C.A., CONSTANTIN J., TORNISIELO V.L. Sorption kinetics of atrazine and diuron in soils from southern Brazil. J. Environ. Sci. Health. 39, 589, 2004.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-60898f78-6c64-47af-b2e1-b692aa7f593d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.