PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 08 | 3 |

Tytuł artykułu

Plant chitinases - regulation and function

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of this review is to present the current state of knowledge on plant chitinases and their regulation and function. Chitinases are up-regulated by a variety of stress conditions, both biotic and abiotic, and by such phytohormones as ethylene, jasmonic acid, and salicylic acid. Like other PR proteins, chitinases play a role in plant resistance against distinct pathogens. Moreover, by reducing the defence reaction of the plant, chitinases allow symbiotic interaction with nitrogen-fixing bacteria or mycorrhizal fungi. However, recent investigations have shown that these enzymes are also involved in numerous physiological events. The involvement of chitinases in development and growth processes is also described.

Wydawca

-

Rocznik

Tom

08

Numer

3

Opis fizyczny

p.809-824

Twórcy

  • Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland

Bibliografia

  • 1.Cohen-Kupiec, R. and Chet, I. The molecular biology of chitin digestion. Curr. Opin. Biotech. 9 (1998) 270-277.
  • 2.Patil, R.S., Ghormade, V. and Deshpande, M.V. Chitinolytic enzymes: An exploration. Enzyme Microb. Technol. 26 (2000) 473-483.
  • 3.Shimono, K., Matsuda, H. and Kawamukai, M. Functional expression of chitinase and chitosanase, and their effects on morphologies in the yeast Schizosaccharomyces pombe. Biosci. Biotechnol. Biochem. 66 (2002) 1143-1147.
  • 4.Hamel, F. and Bellemare, G. Characterisation of a class I chitinase gene and of wound-inducible, root and flower-specific chitinase expression in Brassica napus. Biochim. Biophys. Acta 1263 (1995) 212-220.
  • 5.Collinge, D.B., Kragh, K.M., Mikkelsen, J.D., Nielsen, K.K., Rasmussen, U. and Vad, K. Plant chitinases. Plant J. 3 (1993) 31-40.
  • 6.De Jong, A.J., Cordewener, J., Lo Schiavo, F., Terzi, M., Vandekerckhove, J., Van Kammen, A. and De Vries, S.C. A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4 (1992) 425-433.
  • 7.Goormachtig, S., Lievens, S., Van de Velde, W., Van Montagu, M. and Holsters, M. Srchi13, a novel early nodulin from Sesbania rostrata, is related to acidic class III chitinases. Plan Cell 10 (1998) 905-915.
  • 8.Helleboid, S., Hendriks, T., Bauw, G., Inzé, D., Vasseur, J. and Hilbert, J-L. Three major somatic embryogenesis related proteins in Cichorium identified as PR proteins. J. Exp. Bot. 51 (2000) 1189-1200.
  • 9.Regalado, A.P., Pinheiro, C., Vidal, S., Chaves, I., Ricardo, C.P.P. and Rodrigues-Pousada, C. The Lupinus albus class-III chitinase gene, IF3, is constitutively expressed in vegetative organs and developing seeds. Planta 210 (2000) 543-550.
  • 10.Brunner, F., Stintzi, A., Fritig, B. and Legrand, M. Substrate specificities of tobacco chitinases. Plant J. 14 (1998) 225-234.
  • 11.Hamel, F., Boivin, R., Tremblay, C. and Bellemare, G. Structural and evolutionary relationships among chitinases of flowering plants. J. Mol. Evol. 44 (1997) 614-624.
  • 12.Schultze, M., Staehelin, C., Brunner, F., Genetet, I., Legrand, M., Fritig, B., Kondorosi, E. and Kondorosi, A. Plant chitinase/lysozyme isoforms show distinct substrate specificity and cleavage site preference towards lipochitooligosaccharide Nod signals. Plat J. 16 (1998) 571-580.
  • 13.Subroto, T., Sufiati, S. and Beintema, J.J. Papaya (Carica papaya) lysozyme is a member of the family 19 (basic, class II) chitinases. J. Mol. Evol. 49 (1999) 819-821.
  • 14.Iseli, B., Armand, S., Boiler, T., Neuhaus, J-M. and Henrissat, B. Plant chitinases use two different hydrolytic mechanisms. FEBS Lett. 382 (1996) 186-188.
  • 15.van Aalten, D.M.F., Komander, D., Synstad, B., Gåseidnes, S., Peter, M.G. and Eijsink, V.G.H. Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proc. Natl. Acad. Sci. USA 98 (2001) 8979-8984.
  • 16.Brameld, K.A. and Goddard III, W.A. The role of enzyme distortion in the single displacement mechanism of family 19 chitinases. Proc. Natl. Acad. Sci. USA 95 (1998) 4276-4281.
  • 17.Blackwell, J. Physical methods for the determination of chitin structure and conformation. Meth. Enzymol. 161 (1988) 435-442.
  • 18.Cullimore, J.V., Ranjeva, R. and Bono, J-J. Perception of lipochitooligosaccharidic Nod factors in legumes. Trends Plant Sci. 6 (2001) 24-30.
  • 19.Xie, Z-P., Staehelin, C., Wiemken, A., Broughton, W.J., Müller, J. and Boller, T. Symbiosis-stimulated chitinase isoenzymes of soybean (Glycine max (L.) Merr.). J. Exp. Bot. 50 (1999) 327-333.
  • 20.van Hengel, A.J., Tadesse, Z., Immerzeel, P., Schols, H., van Kammen, A. and de Vries, S.C. N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol. 125 (2001) 1880-1890.
  • 21.van Hengel, A.J., van Kammen, A. and de Vries, S.C. A relationship between seed development, Arabinogalactan-protein (AGPs) and the AGP mediated promotion of somatic embryogenesis. Physiol. Plant. 114 (2002) 637-644.
  • 22.Berger, S., Menudier, A., Julien, R. and Karamanos, Y. Do de-N-glycosylation enzymes have an important role in plant cells? Biochimie 77 (1995) 751-760.
  • 23.Dyachok, J.V., Wiweger, M., Kenne, L. and von Arnold, S. Endogenous Nod-factor-like signal molecules promote early somatic embryo development in Norway spruce. Plant Physiol. 128 (2002) 523-533.
  • 24.van der Holst, P.P.G., Schlaman, H.R.M. and Spaink, H.P. Proteins involved in the production and perception of oligosaccharides in relation to plant and animal development. Curr. Opin. Struct. Biol. 11 (2001) 608-616.
  • 25.Derckel, J-P., Legendre, L., Audran, J-C., Haye, B. and Lambert, B. Chitinases of the grapevine (Vitis vinifera L.): five isoforms induced in leaves by salicylic acid are constitutively expressed in other tissues. Plant Sci. 119 (1996) 31-37.
  • 26.Hanfrey, C., Fife, M. and Buchanan-Wollaston, V. Leaf senescence in Brassica napus: expression of genes encoding pathogenesis-related protein. Plant Mol. Biol. 30 (1996) 597-609.
  • 27.Thomma, B.P.H.J., Eggermont, K., Penninckx, I.A.M.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P.A. and Broekaert, W.F. Separate jasmonate-dependent and salicylate-dependent defence-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95 (1998) 15107-15111.
  • 28.Yeh, S., Moffat, B.A., Griffith, M., Xiong, F., Yang, D.S.C., Wiseman, S.B., Sarhan, F., Danyluk, J., Xue, Y.Q., Hew, C.L., Doherty-Kirby, A. and Lajoie, G. Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol. 124 (2000) 1251-1263.
  • 29.Yu, X-M., Griffith, M. and Wieseman, S.B. Ethylene induces antifreeze activity in winter rye leaves. Plant Physiol. 126 (2001) 1232-1240.
  • 30.Boller, T., Gehri, A., Mauch, F. and Vögeli, U. Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta 157 (1983) 22-31.
  • 31.de A. Gerhardt, L.B., Sachetto-Martins, G., Contarini, M.G., Sandroni, M., de P. Ferreira, R., de Lima, V.M., Cordeiro, M.C., de Oliveira, D.E. and Margis-Pinheiro, M. Arabidopsis thaliana class IV chitinase is early induced during the interaction with Xanthomonas campestris. FEBS Lett. 419 (1997) 69-75.
  • 32.Ding, C-K., Wang, C.Y., Gross, K.C. and Smith, D.L. Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214 (2002) 895- 901.
  • 33.Samac, D.A., Hironaka, C.M., Yallaly, P.E. and Shah, D.M. Isolation and characterisation of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol. 93 (1990) 907-914.
  • 34.Neuhaus, J-M., Fritig, B., Linthorst, H.J.M., Meins, F.Jr., Mikkelsen, J.D. and Ryals, J. A revised nomenclature of chitinase genes. Plant Mol. Biol. Rep. 14 (1996) 102-104.
  • 35.Melchers, L.S., Apotheker-de Groot, M., van der Knaap, J.A., Ponstein, A.S., Sela-Buurlage, M.B., Bol, J.F., Comelissen, B.J.C., van den Elzen, P.J.M. and Linthorst, H.J.M. A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Plant J. 5 (1994) 469-480.
  • 36,Arie, M., Hikichi, K., Takahashi, K. and Esaka, M. Characterisation of basic chitinase which is secreted by cultured pumpkin cells. Physiol. Plant. 110 (2000) 232-239.
  • 37.Neale, A.D., Wahleithner, J.A., Lund, M., Bonnett, H.T., Kelly, A., Meeks- Wagner, D.R., Peacock, W.J. and Dennis, E.S. Chitinase, β-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 2 (1990) 673-684.
  • 38.Robinson, S.P., Jacobs, A.K. and Dry, I.B. A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol. 114 (1997) 771-778.
  • 39.van Buuren, M., Neuhaus, J-M., Shinshi, H., Ryals, J. and Meins, F.Jr. The structure and regulation of homeologous tobacco endochitinase genes of Nicotiana sylvestris and N. tomentosiformis origin. Mol. Gen. Genet. 232 (1992) 460-469.
  • 40.Lawton, K.A., Beck, J., Potter, S., Ward, E. and Ryals, J. Regulation of cucumber class III chitinase gene expression. Mol. Plant-Microbe Interact. 7 (1994) 48-57.
  • 41.Samac, D.A. and Shah, D.M. Developmental and pathogen-induced activation of the Arabidopsis acidic chitinase promoter. Plant Cell 3 (1991) 1063-1072.
  • 42.Hodge, A., Alexander, I.J. and Gooday, G.W. Measurement in situ of chitinase and β-N-acetylglucosaminidase activities in germinating seeds of Pinus sylvestris and Eucalyptus pilularis. Plant Physiol. Biochem. 34 (1996) 301-306.
  • 43.Krishnaveni, S., Liang, G.H., Muthukrishnan, S. and Manickam, A. Purification and partial characterisation of chitinases from sorghum seeds. Plant Sci. 144 (1999) 1-7.
  • 44.Peumans, W.J., Proost, P., Swennen, R.L. and Van Damme, E.J.M. The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and mast probably serves as an important supply of amino acid for the synthesis of ripening-associated proteins. Plant Physiol. 130 (2002) 1063-1072.
  • 45. van Hengel, A., Guzzo, F., van Kammen, A.B. and de Vries, S.C. Expression pattern of the carrot EP3 endochitinase genes in suspension cultures and in developing seeds. Plant Physiol. 117 (1998) 43-53.
  • 46. Wu, C-T., Leubner-Metzger, G., Meins, F.Jr. and Bradford, K.J. Class I β-1,3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiol. 126 (2001) 1299-1313.
  • 47. Passarinho, P.A., Van Hengel, A.J., Fransz, P.F. and de Vries, S.C. Expression pattern of the Arabidopsis thaliana AtEP3/AtchitIV endochitinase gene. Planta 212 (2001) 556-567.
  • 48. Bishop, J.G., Dean, A.M. and Mitchell-Olds, T. Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution. Proc. Natl. Acad. Sci. USA 97 (2000) 5322-5327.
  • 49. Meier, B.M., Shaw, N. and Ślusarenko, A.J. Spatial and temporal accumulation of defence gene transcripts in bean (Phaseolus vulgaris) leaves in relation to bacteria-induced hypersensitive cell death. Mol. Plant- Microbe Interact. 6 (1993) 453-466.
  • 50. Nielsen, K.K., Bojsen, K., Roepstorff, P. and Mikkelsen, J.D. A hydroxyproline-containing class IV chitinase of sugar beet is glycosylated with xylose. Plant Mol. Biol. 25 (1994) 241-257.
  • 51. Lange, J., Mohr, U., Wiemken, A., Boller, T. and Vögeli-Lange, R. Proteolytic processing of class IV chitinase in the compatible interaction of bean roots with Fusarium solani. Plant Physiol. 111 (1996) 1135-1144.
  • 52. Hao, D., Ohme-Takagi, M. and Sarai, A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive elementbinding factor (ERF domain) in plant. J. Biol. Chem. 273 (1998) 26857- 26861.
  • 53. Büttner, M. and Singh, K.B. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA- binding protein interacts with an ocs element binding protein. Proc. Natl. Acad. Sci. USA 94 (1997) 5961-5966.
  • 54. Raikhel, N.V. and Lee, H-I. Structure and function of chitin-binding proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44 (1993) 591-615.
  • 55. Siefert, F. and Grossmann, K. Induction of chitinase and β-1,3-glucanase activity in sunflower suspension cell in response to an elicitor from Phytophthora megasperma f. sp. glycinea (Pmg). Evidence for regulation by ethylene and 1-aminocyclopropane-l-carboxylic acid (ACC). J. Exp. Bot. 48 (1997) 2023-2029.
  • 56. de los Reyes, B.G., Taliaferro, C.M., Anderson, M.P., Melcher, U. and McMaugh, S. Induce expression of the class II chitinase gene during cold acclimation and dehydration of bermudagrass (Cynodon sp.). Theor. Appl. Genet. 103 (2001) 297-306.
  • 57. Schraudner, M., Ernst, D., Langebartels, C. and Sandermann, H. Biochemical plant responses to ozone. III. Activation of the defence-related proteins β-1,3-glucanase and chitinase in tobacco leaves. Plant Physiol. 99 (1992) 1321-1328.
  • 58. Guevara, M.G., Oliva, C.R., Machinaadiarena, M. and Daleo, G.R. Purification and properties of an aspartic protease from potato tuber that is inhibited by a basic chitinase. Physiol. Plant. 106 (1999) 164-169.
  • 59. Taira, T., Ohnuma, T., Yamagami, T., Aso, Y., Ishiguro, M. and Ishihara, M. Antifungal activity of rye (Secale cereale) seed chitinases: the different binding manner of class I and class II chitinase to the fungal cell walls. Biosci. Biotechnol. Biochem. 66 (2002) 970-977.
  • 60. Salzer, P., Hebe, G. and Hager, A. Cleavage of chitinous elicitors from the ectomycorrhizal fungus Hebeloma crustuliniforme by host chitinases prevents induction of K+ and Cl- release, extracellular alkalisation and H2O2 synthesis of Picea abies cells. Planta 203 (1997) 470-479.
  • 61. Zhong, R., Kays, S.J., Schroeder, B.P. and Ye, Z-H. Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell 14 (2002) 165-179.
  • 62. De Jong, A.J., Heidstra, R., Spaink, H.P., Hartog, M.V., Meijer, E.A., Hendriks, T., Lo Schiavo, F., Terzi, M., Bisseling, T., Van Kammen, A. and De Vries, S.C. Rhizobium lipooligosaccharides rescue a carrot somatic embryo mutant. Plant Cell 5 (1993) 615-620.
  • 63. Dong, J.Z. and Dunstan, D.I. Endochitinase and β-1,3-glucanase genes are developmentally regulated during somatic embryogenesis in Picea glauca. Planta 201 (1997) 189-194.
  • 64. Kim, Y.S., Lee, J.H., Yoon, G.M., Cho, H.S., Park, S-W., Suh, M.C., Choi, D., Ha, H.J., Liu, J.R. and Pai, H-S. CHRK1, a chitinase-related receptor-like kinase in tobacco. Plant Physiol. 123 (2000) 905-915.
  • 65. Day, R.B., Okada, M., Ito, Y., Tsukada, K., Zaghouani, H., Shibuya, N. and Stacey, G. Binding site for chitin oligosaccharides in the soybean plasma membrane. Plant Physiol. 126 (2001) 1162-1173.
  • 66. Felix, G., Baureithel, K. and Boller, T. Desensitisation of the perception system for chitin fragments in tomato cells. Plant Physiol. 117 (1998) 643-650.
  • 67. Malinowski, R. and Filipecki, M. The role of cell wall in plant embryogenesis. Cell. Mol. Biol. Lett. 7 (2002) 1137-1151.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-6065103c-f4cb-4c0e-ae58-8ba2d61f8ed7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.