PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2009 | 61 Supplement |

Tytuł artykułu

Genetic structure of Picea abies populations growing on extreme sites as revealed by isoenzyme markers: a case study from Slovenia and Bosnia and Herzegovina

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Three populations of Norway spruce from ecologically extreme environments in Slovenia and Bosnia and Herzegovina were examined for genetic polymorphism. The spruces there grow in specific forest communities (Sphagno-Piceetum) which represent the remnants of the post-glacial vegetation. The aim of the study was to search for similarities in the genetic variation among populations adapted to such conditions. In total, 10 isoenzyme systems involving 16 gene loci were analysed. The results showed differences in genetic differentiation at loci Got-B, Skdh-A and 6-Pgdh-C between the two Slovenian populations and the Bosnian population, but also indicated an interestingly close relationship between the Slovenian population Pohorje and the Bosnian population Nišići.

Wydawca

-

Czasopismo

Rocznik

Opis fizyczny

p.137-144,ref.

Twórcy

autor
  • University of Sarajevo, Zagrebacka 20, 71000 Sarajevo, Bosnia and Herzegovina
autor
autor

Bibliografia

  • Ballian D., Bogunić F., Konnert M., Kraigher H., Puko M., Boži G. 2007. Geneti kadiferencira nost subpopulacija obi ne smreke (Picea abies (L.) Karst.) na planini Igman. Šumarski list 1–2: 13–23.
  • Bergmann F., Hosius B. 1996. Effects of heavy-metal polluted soils on the genetic structure of Norway spruce seedling populations. Water, Air and Soil Pollution 89: 363–373.
  • Bergmann F., Scholz F. 1987. The impact of air pollution on the genetic structure of Norway spruce. Silvae Genetica 36(2): 80–83.
  • Bergmann F., Scholz F. 1989. Selection effects of air pollution in Norway spruce (Picea abies) populations. In: Genetic Effects of Air Pollutants in Forest Tree Populations. Scholz F., Gregorius H.R., Rudin D. (eds.). Springer Verlag, Berlin, pp. 143–160.
  • Boži G. 2002. Subpopulation differentiation under different forest site conditions within autochthonous Norway spruce (Picea abies (L.) Karst.) population. Razprave IV. Razreda SAZU, XLIII–3: 95–109, Ljubljana.
  • Boži G., Urban i M. 2001. Influences of the soils on the morphological characteristics of an autochthonous Norway spruce on the Pokljuka plateau. Glasnik za Šumske Pokuse 38: 137–147.
  • Boži G., Urban i M. 2003. The morphological and genetical characterisation of native Norway spruce (Picea abies (L.) Karst.) population in the area of Pokljuka mire. Acta Biologica Slovenica 46(1): 17–25.
  • Budnar-Tregubov A. 1958. Palinološko raziskovanje barij na Pokljuki in Pohorju. Geologija, Razprave in poro ila, Ljubljana 4: 197–220.
  • Gillet E.M. 1998. GSED – Genetic Structure from Electrophoresis Data, Version 1.1e. Institut fuer Forstgenetik und Forstpflanzenzuechtung Universitaet Gettingen.
  • Goncharenko G.G., Potenko V.V. 1992. Genetic variability and differentiation in Norway spruce (Picea abies (L.) Karst.) and Siberian spruce (Picea obovata Ledeb.) populations. Soviet Genetics 27: 1235–1246.
  • Goncharenko G.G., Potenko V.V., Slobodyan J.N., Sidor A.I. 1990. Genetic and taxonomic relations between Picea abies (L.): montana Schur. and P. obovata Ledeb. Doklady Akademii Nauk BSSR 34: 361–364.
  • Gregorius H.R. 1978. The concept of genetic diversity and differentiation. Theoretical and Applied Genetics 74, 397–401.
  • Hosius B., Bergmann F. 1993. Adaptation of Norway spruce to heavy metal contaminated soil. In: Norway Spruce Provenances and Breeding. Rone V. (ed.). Latvian Forest Research Institute ‘Silva’, Riga, pp. 200–207.
  • Konnert M. 2004. Handbücher für Isoenzymanalyse. Krajmerová D., Longauer R. 2000. Genetická diverzitasmrekaoby ajného na Slovensku. Forestry Journal 46(3): 273–286.
  • Krutovskii V.K., Bergmann F. 1995. Introgressive hybridization and phylogenetic relationships between Norway, Picea abies (L.) Karst., and Siberian, Picea obovata Ledeb., spruce species studied by isozyme loci. Heredity 74: 464–480.
  • Langercrantz U., Ryman N. 1990. Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation. Evolution 44: 38–53.
  • Longauer R., Gömöry D., Paule L., Karnosky D.F., Makovská B., Müller-Starck G., Percy K., Szaro R. 2001. Selection effects of air pollution on gene pools of Norway spruce, European silver fir and European beech. Environmental Pollution 115: 405–411.
  • Müller-Starck G. 1989. Genetic implications of environmental stress in adult forest stands of Fagus sylvatica L. In: Genetic Effects of Air Pollutants in Forest Tree Populations. Scholz F., Gregorius H.R., Rudin D. (eds.). Springer Verlag, Berlin, pp. 127–142.
  • Müller-Starck G., Baradat P.H., Bergmann F. 1992. Genetic variation within European tree species. In: Population Genetics of Forest Trees. Adams W.T., Strauss S.H., Copes D.L. (eds.). Kluwer Academic Publishers, Amsterdam, pp. 23–47.
  • Pacalaj M., Longauer R., Krajmerová D., Gömöry D. 2002. Effect of site altitude on growth and survival of Norway spruce (Picea abies L.) provenances on the Slovak plots of IUFRO experiment 1972. Journal of Forest Science 48(1): 16–26.
  • SkrøppaT. 2003. EUFORGEN Technical Guidelines for genetic conservation and use for Norway spruce (Picea abies). International Plant Genetic Resources Institute, Rome.
  • Stefanović V. 1977. Fitocenologija sa pregledom šumskih fitocenoza Jugoslavije. Zavod za udžbenike, Sarajevo.
  • Stefanović V., Beus V., Burlica ., Dizdarević H., Vukorep I. 1983. Ekološko-vegetacijska rejonizacija Bosne i Hercegovine. Šumarski fakultet, Sarajevo, Posebna izdanja br. 17.
  • Zupancic M. 1999. Smrekovi gozdovi Slovenije. Dela, 4. r., SAZU Ljubljana, 36.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-5fbb76da-b884-4578-8b1f-f993373f529a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.