EN
Robust and reproducible protoplast-to-plant systems are crucial for underpinning genetic manipulation technology involving somatic hybridisation and transformation. Novel and effective approaches for maximising the efficiency of such protoplast cultures include supplementation of media with surfactants and artificial gas carriers, such as perfluorochemicals and haemoglobin. Physical parameters, particularly electrostimulation, also enhance the development of protoplasts and protoplast-derived cells in cullure. DNA uplake into protoplasts is now a routine and universally accepted procedure in plant biotechnology for introducing and evaluating both short-term (transient) and long-term (stable) expression of genes in cells and regenerated plants. Imporlantly, protoplast fusion overcomes pre- and post-zygotic sexual incompatibility barriers and generates novel germplasm through new nuclear-cytoplasmic combinations. In this respect, considerable progress has been made in generating somatic hybrid plants, particularly in citrus, brassicas and polato. Isolated protoplasts are also a unique single cell syslem for evaluating aspects of ultrastructure, genetics and physiology, with potential for the biosynthesis of novel secondary products, including commercially-important recombinant proteins (e.g. antibodies), and as systems in toxicity screening. Recent advances in protoplast technology have benefited from advances in animal and microbial cell culture, with interesting parallels existing between these systems. Further innovations will necessitate the strengthening of interdisciplinary links in these research fields and the requirement for continued dialogue and cooperation between workers with diverse but complementary skills.