PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2006 | 48 | 4 |

Tytuł artykułu

Diffusive component of the vertical flux of particulate organic carbon in the North polar Atlantic

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The diffusive component of the vertical flux of particulate organic carbon (POC) from the surface ocean layer has been estimated using a combination of the mixed layer model and ocean color data from the SeaWiFS satellite. The calculations were carried out for an example location in the north polar Atlantic centered at 75◦N and 0◦ E for the time period of 1998–2004. The satellite estimates of surface POC derived using a regional ocean color algorithm were applied as an input to the model driven by local surface heat and momentum fluxes. For each year of the examined period, the diffusive POC flux was estimated at 200-m depth from April through December. The highest flux is generally observed in the late fall as a result of increased heat loss and convectional mixing of surface waters. A relatively high diffusive POC flux is also observed in early spring, when surface waters are weakly stratified. In addition, the model results demonstrate significant interannual variability. The highest diffusive POC flux occurred in 1999 (about 4500 mg m−2 over the 9-month period). In 1998 and 2002 the estimated flux was about two orders of magnitude lower. The interannual variability of the diffusive POC flux is associated with mixed layer dynamics and underscores the importance of atmospheric forcing for POC export from the surface layer to the ocean’s interior.

Wydawca

-

Czasopismo

Rocznik

Tom

48

Numer

4

Opis fizyczny

p.455-477,fig.,ref.

Twórcy

autor
  • San Diego State University, 6505 Alvarado Rd., Ste.206, San Diego, CA 92120, USA

Bibliografia

  • Anderson L. G., Drange H., Chierici. M, Fransson A., Johannessen T., Skjelvan I., Rey F., 2000, Annual carbon fluxes in the upper Greenland Sea based on measurements and a box-model approach, Tellus B, 52 (3), 1013–1024.
  • Antia A.N., Koeve W., Fischer G., Blanz T., Schulz-Bull D., Scholten J., Neuer S., Kremling K., Kuss J., Peinert R., Hebbeln D., Bathmann U., Conte M., Fehner U., Zeitzschel B., 2001, Basin-wide particulate carbon flux in the Atlantic Ocean: Regional export patterns and potential for atmospheric CO2 sequestration, Global Biogeochem. Cy., 15 (4), 845–862.
  • Antoine D., Andre J.-M., Morel A., 1996, Oceanic primarypr oduction 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll, Global Biogeochem. Cy., 10 (1), 57–69.
  • Behrenfeld M. J., Boss E., Siegel D.A., Shea D.M., 2005, Carbon-based ocean productivity and phytoplankton physiology from space, Global Biogeochem. Cy., 19 (1), GB1006, doi:10.1029/2004GB002299.
  • Behrenfeld M. J., Falkowski P.G., 1997, Photosynthetic rates derived from satellitebased chlorophyll concentration, Limnol. Oceanogr., 42 (1), 1–20.
  • Berelson W., 2001, The flux of particulate organic carbon into the ocean interior: A comparison of four JGOFS regional studies, Oceanography, 14 (4), 59–67.
  • Berger W.H., Fischer K., Lai C., Wu G., 1987, Ocean carbon flux: Global maps of primarypr oduction and export production, [in:] Biogeochemical cycling and fluxes between the deep euphotic zone and other oceanic realms, C. Agegian (ed.), SIO Ref. 87–30, Univ Calif., San Diego; Scripps Inst. Oceanogr., La Jolla, California, 44 pp.,
  • Betzer P. R., Showers W. J., Laws E.A., Winn C. D., DiTullio G. R., Kroopnik P.M., 1984, Primarypr oductivity and particle fluxes on a transect of the equator at 153 ◦W in the Pacific Ocean, Deep-Sea Res. Pt. A, 31, 1–11.
  • Blumberg A. F., Mellor G. L., 1983, Diagnostic and prognostic numerical circulation studies of the South California Bight, J. Geophys. Res., 88, 4579–4592.
  • Boyd P.W., Stevens C. L., 2002, Modelling particle transformations and the downward organic carbon flux in the NE Atlantic Ocean, Prog. Oceanogr., 52 (1), 1–29.
  • Buesseler K.O., Andrews J.A., Hartman M.C., Belastock R., Chai F., 1995, Regional estimates of the export flux of particulate organic carbon derived from 234Th during the JGOFS EqPac program, Deep-Sea Res. Pt. II, 42 (2–3), 777–804.
  • Buesseler K.O., Bacon M.P., Cochran J.K., Livingston H.D., 1992, Carbon and nitrogen export during the JGOFS North Atlantic bloom experiment estimated from 234Th: 238U disequilibria, Deep-Sea Res., 39, 1115–1137.
  • Druet C., 2003, The fine structure of marine hydrophysical fields and its influence on the behaviour of plankton: an overview of some experimental and theoretical investigations, Oceanologia, 45 (4), 517–555.
  • Druet C., Zielinski A., 1994, Modelling the fine-structure of the phytoplankton concentration in a stable stratified sea, Oceanol. Acta, 17, 79–88.
  • Ducklow H.W., Steinberg D.K., Buesseler K.O., 2001, Upper ocean carbon export and the biological pump, Oceanography, 14 (4), 50–58.
  • Dugdale R.C., Goering J. J., 1967, Uptake of new and regenerated forms of nitrogen in primarypr oductivity, Limnol. Oceanogr., 12, 196–206.
  • Dzierzbicka-Głowacka L., 2005a, Modelling the seasonal dynamics of marine plankton in southern Baltic Sea. Part 1. A coupled ecosystem model, Oceanologia, 47 (4), 591–619.
  • Dzierzbicka-Głowacka L., 2005b, Modelling the seasonal dynamics of marine plankton in southern Baltic Sea. Part 2. Numerical simulations, Oceanologia, 48 (1), 41–71.
  • Eppley R.W., 1989, New production, history, methods, problems, [in:] Productivity of the ocean: Present and past, W.H. Berger, V. S. Smetacek & G. Wefer (eds.), Wiley & Sons, New York.
  • Eppley R.W., Petersen B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282 (5754), 677–680.
  • Ezer T., 2000, On the seasonal mixed layer simulated by a basin-scale ocean model and the Mellor-Yamada turbulence scheme, J. Geophys. Res., 105 (C7), 16843–16855.
  • Fasham M. J.R., Ducklow H.W., McKelvie S.M., 1990, A nitrogen-based model of plankton dynamics in the oceanic mixed layer, J. Mar. Res., 48, 591–639.
  • Gordon H.R., Wang M., 1994, Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminaryalgorit hm, Appl. Opt., 33, 443–452.
  • Hooker S. B., McClain C.R., 2000, The calibration and validation of SeaWiFS data, Prog. Oceanogr., 45 (3–4), 427–465.
  • Huisman J., van Oostveen P., Weissing F. J., 1999, Critical depth and critical turbulence: two different mechanisms for the development of phytoplankton blooms, Limnol. Oceanogr., 44 (7), 1781–1788.
  • Jerlov N.G., 1968, Optical oceanography, Elsevier, New York, 194 pp.
  • Laws E.A., Falkowski P.G., Smith W.O., Ducklow H., McCarthy J.J., 2000, Temperature effects on export production in the open ocean, Global Biogeochem. Cy., 14 (4), 1231–1246.
  • Legendre L., Rivkin R.B., 2002, Fluxes of carbon in the upper ocean: Regulation byfo od-web control nodes, Mar. Ecol. Prog. Ser., 242, 95–109.
  • Lima I.D., Doney S.C., 2004, A three-dimensional, multinutrient, and sizestructured ecosystem model for the North Atlantic, Global Biogeochem. Cy., 18 (3), GB3019, doi:10.1029/2003GB002146.
  • Lutz M., Dunbar R., Caldeira K., 2002, Regional variabilityin the vertical flux of particulate organic carbon in the ocean interior, Global Biogeochem. Cy., 16 (3), 1037, doi:10.1029/2000GB001383.
  • Marra J., Ho C., 1993, Initiation of the spring bloom in the northeast Atlantic (47 ◦N, 20 ◦W): A numerical simulation, Deep-Sea Res. Pt. II, 40 (1–2), 55–73.
  • Martin J.H., Fitzwater S. E., Gordon R.M., Hunter C.N., Tanner S., 1993, Iron, primarypr oduction, and carbon-nitrogen flux studies during the JGOFS North Atlantic Bloom Experiment, Deep-Sea Res. Pt. II, 40 (1–2), 115–134.
  • Martin J., Knauer G., Karl D., Broenkow W., 1987, VERTEX: carbon cycling in the northeast Pacific, Deep-Sea Res., 34, 267–286.
  • Mellor G. L., Yamada T., 1974, A hierarchyof turbulence closure models for planetaryb oundary layers, J. Atmos. Sci., 31, 1791–1806.
  • Mellor G. L., Yamada T., 1982, Development of a turbulence closure model for geophysical problems, Rev. Geophys. Space Phys., 20, 851–857.
  • Mellor G. L, 2004, Users Guide for a three-dimensional, primitive equation numerical ocean model, Available on the Princeton Ocean Model (POM)w eb site, rev. 2004, (http://www.aos.princetion.edu/WWPUBLIC/htdocs.pom/).
  • Noji T. T., Miller L.A., Skjelvan I., Falck E., Borsheim K.Y., Rey F., Urban-Rich J., Johannessen T., 2000, Constraints on carbon drawdown and export in the Greenland Sea, [in:] The Northern North Atlantic: A changing environment, P. Schafer, W. Ritzrau, M. Schluter & J. Thiede (eds.), Springer, Berlin, 39–52.
  • Pace M. L., Knauer G.A., Karl D.M., Martin J.H., 1987, Primarypr oduction, new production and vertical flux in the eastern Pacific Ocean, Nature, 325 (6107), 803–804.
  • Paulson C.A., Simpson J. J., 1977, Irradiance measurements in the upper ocean, J. Phys. Oceanogr., 7, 952–956.
  • Patsch J., Kuhn W., Radch G., Santana Casiano J.M., Gonzalez Davila M., Neuer S., Freudenthal T., Llinas O., 2002, Interannual variabilityof carbon fluxes at the North Atlantic Station ESTOC, Deep-Sea Res. Pt. II, 49 (1–3), 253–288.
  • Schlitzer R., 2002, Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates, Deep-Sea Res. Pt. II, 49 (9–10), 1623–1644.
  • Schlitzer R., 2004, Export production in the Equatorial and North Pacific derived from dissolved oxygen, nutrient and carbon data, J. Oceanogr., 60 (1), 53–62.
  • Schlitzer R., Usbeck R., Fischer G., 2003, Inverse modeling of particulate organic carbon fluxes in the South Atlantic, [in:] The South Atlantic in the late quaternary: reconstruction of material budgets and current systems, Springer-Verlag, Berlin; Heidelberg; New York; Tokyo, 1–19.
  • Siegel D.A, Deuser W.G., 1997, Trajectories of sinking particles in the Sargasso Sea: Modeling of statistical funnels above deep-ocean sediment traps, Deep-Sea Res. Pt. I, 44 (9–10), 1519–1541.
  • Stramska M., Dickey T.D., Marra J., Plueddemann A., Langdon C., Weller R., 1995, Bio-optical variability associated with phytoplankton dynamics in the North Atlantic Ocean during spring and summer of 1991, J. Geophys. Res., 100 (C4), 6621–6632.
  • Stramska M., Stramski D., 2005, Variabilityof particulate organic carbon concentration in the north polar Atlantic based on SeaWiFS ocean color observations, J. Geophys. Res., 110 (C10018), doi:10.1029/2004JC002762.
  • Stramski D., Reynolds R.A., Kahru M., Mitchell B.G., 1999, Estimation of particulate organic carbon in the ocean from satellite remote sensing, Science, 285 (5425), 239–242.
  • Suess E., 1980, Particulate organic carbon flux in the oceans – surface productivity and oxygen utilization, Nature, 288 (5788), 260–263.
  • Usbeck R., Schlitzer R., Fischer G., Wefer G., 2003, Particle fluxes in the ocean: Comparison of sediment trap data with results from inverse modeling, J. Marine Syst., 39 (3–4), 167–182.
  • von Bodungen B., Antia A., Bauerfeind E., Haupt O., Koeve W., Machado E., Peeken I., Peinert T., Reitmeier S., Thomsen C., Voss M., Wunsch M., Zeller U., Zeitzschel B., 1995, Pelagic processes and vertical flux of particles: an overview of a long-term comparative studyin the Norwegian Sea and Greenland Sea, Geol. Runds., 84 (1), 11–27.
  • Westberry T. K., Behrenfeld M. J., Boss E., Siegel D.A., 2006, Carbon-based net primarypr oduction and phytoplankton growth rates from ocean color measurements: Part II, Ocean Sciences Meeting, Honolulu, February 20–24, 2006.
  • Zedler S. E., Dickey T.D., Doney S.C., Price J.F., Yu X., Mellor G. L., 2002, Analysis and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed Mooring site: August 13–23, 1995, J. Geophys. Res., 107(C12), 3232, doi:10.1029/2001JC000969.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-5efbcfee-6192-42bf-b155-fc2e4a386d62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.