PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 46 | 2 |

Tytuł artykułu

Association of PIT1, GH and GHRH polymorphisms with performance and carcass traits in Landrace pigs

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The study of candidate genes, based on physiological effects, is an important tool to identify genes to be used in marker-assisted selection programs. In this study, a group of halothane gene-free, non-castrated, male Landrace pigs was used to study the association between polymorphisms in the PIT1 (n = 218), GH (n = 213) and GHRH (n = 206) genes and fat thickness, average daily gain, and the EPD (expected progeny difference) for fat thickness, average daily gain, and litter size. These genes are potential candidate markers because of their important physiological effects. The pigs were genotyped by PCR-RFLP, and the statistical model used to analyze the association between genotypes and the traits measured included genotypes as a fixed effect and age and weight as covariates. PIT1 polymorphisms were associated with fat thickness (P = 0.0019), EPD for average daily gain (P = 0.0001) and EPD for fat thickness (P = 0.0001), whereas GH polymorphisms were associated with fat thickness (P = 0.0326) and average daily gain (P = 0.0127), and GHRH polymorphisms were associated with the average daily gain (P = 0.0001) and EPD for fat thickness (P = 0.0004). These results confirmed the potential usefulness of these genes in marker-assisted selection programs for pig breeding.

Wydawca

-

Rocznik

Tom

46

Numer

2

Opis fizyczny

p.195-200,ref.

Twórcy

autor
  • Laboratory of Molecular Genetics, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil
  • Laboratory of Animal Molecular Genetics, EMBRAPA Genetics Resources and Biotechnology, Brasilia, DF, Brazil
autor
  • Laboratory of Molecular Genetics, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil
autor
  • Institute of Mathematics, Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
autor
  • Laboratory of Molecular Genetics, Institute of Genetics and Biochemistry, Federal University of Uberlandia, Uberlandia, MG, Brazil

Bibliografia

  • Arbona JR, Salfen BE, Marple DN, Mulvaney DR, Kuhlers DL, Sartin JL, et al., 1990. Effects of age, sex and selection for growth on growth hormone secretion by individually dispersed porcine anterior pituitary cells. J Anim Sci 68 (Suppl. 1): 302 (Abstr.).
  • Baskin LC, Pomp D, 1997. Restriction fragment length polymorphism in amplification products of the porcine growth hormone-releasing hormone gene. J Anim Sci 75: 2285.
  • Brunsch C, Sternstein I, Reinecke P, Bieniek J, 2002. Analysis of associations of PIT1 genotypes with growth, meat quality and carcass composition traits in pigs. J Appl Genet 43: 85-91.
  • Clutter AC, Brascamp EW, 1998. Genetics of performance traits. In: Rothschild MF, Ruvinsky A, eds. The Genetics of the Pig. Cab International Wallingford UK: 427-462.
  • Cogan JD, Phillips JA, 1998. Growth disorders caused by genetic defects in the growth hormone pathway. Adv Pediatr 45: 337-361.
  • De Feo P, Perriello G, Trolone E, Ventura MM, Santeusanio F, Brunetti P, et al., 1989. Demonstration of a role for growth hormone in glucose counterregulation. Am J Physiol 256: E835-E843.
  • De Vries AG, Sosnicki A, Gamier JP, Piastów GS, 1998. The role of major genes and DNA technology in selection for meat quality in pigs. Meat Sci 49: S245-S255.
  • Etherton TD, 2000. The biology of somatotropin in adipose tissue growth and nutrient partitioning. J Nutr 130: 2623-2625.
  • Farmer C, Pommier SA, Brazeau P, 1993. Validation of a culture system for porcine pituitary cells: effects of growth hormone-releasing factor and(or) somatostatin on growth hormone secretion. J Anim Sci 71:923-929.
  • Franco MM, Antunes RC, Oliveira KM, Pereira CD, Biase FH, Nunes FMF, Goulart LR, 2005. Association of a PIT1 gene polymorphism with growth hormone mRNA levels in pig pituitary glands. Genet Mol Biol 28: in press.
  • Fujii J, Otsu K, Zorzato F, De Leon S, Khanna VK, Weiler JE, et al., 1991. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253: 448-451.
  • Geldermann H, Muller E, Beeckmann P, Knorr C, Yue G, Moser G, 1996. Mapping of quantitative trait loci by means of marker genes in F₂ generations of wild boar, Pietrain and Meishan pigs. J Anim Breed Genet 113:381-387.
  • Chung HO, Kato T, Tomizawa K, Kato Y, 1998. Molecular cloning of pit-1 cDNA from porcine anterior pituitary and its involvement in pituitary stimulation by growth hormone-releasing factor. Exp Clin Endocrinol Diabetes 106(3): 203-210.
  • Knorr C, Moser G, Muller E, Geldermann H, 1997. Associations of GH gene variants with performance traits in F₂ generations of European wild boar, Pietrain and Meishan pigs. Anim Genet 28: 124-128.
  • Larsen NJ, Nielsen VH, 1993. Apa I and Cfo I polymorphisms in the porcine growth hormone gene. Anim Genet 24: 71.
  • Magri KA, Adamo M, Leroith D, Etherton TD, 1990. The inhibition of insulin action and glucose metabolism by porcine growth hormone in porcine adipocytes is not the result of any decrease in insulin binding or receptor kinase activity. Biochem J 266: 107-113.
  • Moody DE, Pomp D, Barendse W, 1995. Restriction fragment length polymorphism in amplification products of the bovine growth hormone-releasing hormone gene. J Anim Sci 73: 3789.
  • Nielsen VH, Larsen NJ, 1991. Restriction fragment length polymorphisms at the growth hormone gene in pigs. Anim Genet 22: 291-294.
  • Rehfeldt C, Nürnberg K, Ender K, 1994. Effects of exogenous porcine somatotropin on the development of fat cells and fatty acid composition in backfat of live finishing pigs. Meat Sci 36: 321-331.
  • SAS. SAS User’s Guide: Statistical Analysis Systems. SAS Institute, Inc, Cary, NC, 1992.
  • Stancekova K, Vasicek D, Peskovicova D, Bulla J, Kubek A, 1999. Effect of genetic variability of the porcine pituitary-specific transcription factor (PIT1) on carcass traits in pigs. Anim Genet 30: 313-315.
  • Sun HS, Anderson LL, Yu TP, Kim KS, Klindt J, Tuggle CK, 2002. Neonatal Meishan pigs show POU1F1 genotype effects on plasma GH and PRL concentration. Anim Reprod Sci 69: 223-237.
  • Te Pas MFW, Freriksen JWM, Van Bijnen AJHM, Gerritsen CLM, Van Den Bosch TJ, Harders FH, et ah, 2001. Selection for growth rate or against back fat thickness in pigs is associated with changes in growth hormone axis plasma protein concentration and mRNA level. Domest Anim Endocrinol 20: 165-184.
  • Tuggle CK, Trenkle A, 1996. Control of growth hormone synthesis. Domest Anim Endocrinol 13: 1-33.
  • Whittemore CT, 1986. An approach to pig growth modeling. J Anim Sci 63: 615-621.
  • Yu TP, Schmitz CB, Rothschild MF, Tuggle CK, 1994. Expression pattern, genomic cloning and RFLP analyses of the swine PIT1 gene. Anim Genet 25: 229-233.
  • Yu TP, Tuggle CK, Schmitz CB, Rothschild MF, 1995. Association of PIT 1 polymorphisms with growth and carcass traits in pigs. J Anim Sci 73: 1282-1288.
  • Yu TP, Wang L, Tuggle CK, Rothschild MF, 1999. Mapping genes for fatness and growth on pig chromosome 13: a search in the region close to the pig PIT1 gene. J Anim Breed Genet 116: 269-280.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-5e7e5a06-d469-4d0c-95df-a7f7af63384b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.