PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 60 | 2 |

Tytuł artykułu

Cortical synchronization suggests neural principles of visual feature grouping

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Compositions of visual scenes are related here to neural signals in visual cortex and to cortical circuit models to understand neural mechanisms of perceptual feature grouping. Starting from the hypothesis that synchronization and decoupling of cortical y-activities (35-90 Hz) define the relations among visual objects, we concentrate on synchronization related to (1) static retinal stimulation during ocular fixation, and (2) transient stimulation by sudden shifts in object position. The synchronization hypothesis has been tested by analyzing signal correlations in visual cortex of monkeys with the following results: Static retinal stimuli induce loosely phase-coupled y-activities among neurons of an object's cortical representation. Patches of y-synchronization become decoupled across the representation of an object's contour, and therby can code figure-ground segregation. Transient stimuli evoke synchronized volleys of stimulus-locked activities that are typically non-rhythmic and include low frequency components in addition to those in the y-range. It is argued that stimulus-induced and stimulus-locked synchronizations may play different roles in perceptual feature grouping.

Wydawca

-

Rocznik

Tom

60

Numer

2

Opis fizyczny

p.261-269,fig.

Twórcy

autor
  • Philipps-University, Renthof 7, D-35032 Marburg, Germany

Bibliografia

  • Eckhorn R. (1999) Neural mechanisms of visual feature bind­ing investigated with microelectrodes and models. Vision Cognition 6: 231 -265.
  • Eckhorn R., Bauer R., Jordan W., Brosch M., Kruse W., Münk M., Reitboeck H.J. (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol. Cybern. 60: 121-130.
  • Eckhorn R., Gabriel A. (1999) Phase continuity of fast oscil­lations may support the representation of object continuity in striate cortex of awake monkey. Soc. Neurosci. Abstr. 25: Part l,p.677.
  • Eckhorn R„ Reitboeck H. J., Arndt M., Dicke P.( 1990) Feature linking among distributed assemblies: simulations and re­sults from cat visual cortex. Neural Comput. 2: 293-306.
  • Frien A., Eckhorn R. (2000) Functional coupling shows stronger stimulus dependency for fast oscillations than for low frequency components in striate cortex of awake mon­key. Eur. J. Neurosci. 12: 14-26.
  • Frien A., Eckhorn R., Bauer R., Woelbern T., Gabriel A. (2000) Fast oscillations display sharper orientation tun­ing than slower components of the same recordings in striate cortex of awake monkey. Eur. J. Neurosci. 12: 1­13.
  • Frien A., Eckhorn R., Bauer R„ Woelbern T„ Kehr H.( 1994) Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey. NeuroReport 5: 2273-2277.
  • Gail A„ Brinksmayer H.J., Eckhorn R. (2000) Contour de­couples gamma activity across texture representation in monkey striate cortex. Cerebral Cortex (in press) Gray C.M. (1999) The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron 24: 31-47.
  • Gray C.M., König P., Engel A.K., Singer W. (1989) Oscilla­tory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334-337.
  • Juergens E„ Guettler A., Eckhorn R.(1999) Visual stimulation elicits locked and induced gamma oscillations in monkey intracortical- and EEG-potentials, but not in human EEG. Exp. Brain Res. 129: 247-259.
  • Kreiter A., Singer W. (1992) Oscillatory neuronal responses in the visual cortex of the awake macaque monkey. Eur. J. Neurosci. 4: 369-375.
  • Kruse W., Eckhorn R. (1996) Inhibition of sustained gamma oscillations (35-80 Hz) by fast transient responses in cat visual cortex. Proc. Natl. Acad. Sei. USA 3: 6112-6117.
  • Lamme V.A.F., Spekreijse H. (1998) Neuronal synchrony does not represent texture segregation. Nature 396: 362-366.
  • Malsburg C.v.d., Schneider W. (1986) A neural cocktail­party processor. Biol. Cybern. 54: 29-40.
  • Reitboeck H.J. (1983) A multi-electrode matrix for studies of temporal signal correlations within neural assemblies. In: Synergetics of the brain (Eds. E. Basar and H. Haken). Springer, Berlin, p. 174-182.
  • Saam M., Eckhorn R. (2000) Lateral spike conduction veloc­ity in visual cortex affects spatial range of synchroniza­tion and receptive field size without visual experience: a learning model with spiking neurons. Biol. Cybern. (in press)

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-5dde388d-b4d7-4b7d-8cec-bf15ee8ff95e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.