PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 11 | 3 |

Tytuł artykułu

The effect of auxins [IAA and 4-Cl-IAA] on the redox activity and medium pH of Zea mays L. root segments

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Indole-3-acetic acid (IAA) and 4-chloroindole-3-acetic acid (4-Cl-IAA) were tested at different concentrations and times for their capacity to change the redox activity and medium pH of maize root segments. The dose-response surfaces (dose-response curves as a function of time) plotted for redox activity and changes in medium pH (expressed as ΔpH) had a similar shape for both auxins, but differed significantly at the optimal concentrations. With 4-Cl-IAA, the maximal values of redox activity and medium pH changes were observed at 10−10 M, which was a 100-fold lower concentration than with IAA. Correlations were observed between redox activity and medium pH changes at the optimal concentrations of both IAA and 4-Cl-IAA. The results are discussed herein, taking into account both the concentration of the auxins and the effects produced by them.

Wydawca

-

Rocznik

Tom

11

Numer

3

Opis fizyczny

p.376-383,fig.,ref.

Twórcy

autor
  • University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
autor

Bibliografia

  • 1. Crane, F.L., Goldenberg, H. and Morré, D.J. Dehydrogenases of the plasma membrane. Subcell. Biochem. 6 (1979) 345-399.
  • 2. Lüthje S., Döring, O., Heuer, S., Lüthen, H. and Böttger, M. Oxidoreductases in plant plasma membranes. Biochim. Biophys. Acta 1331 (1997) 81-102.
  • 3. Medina, M.A., Del Castillo-Olivares, A. and NúÑez De Castro, I. Multifunctional plasma membrane redox systems. BioEssays 19 (1997) 977- 984.
  • 4. Bérczi, A. and Møller, I.M. Redox enzymes in the plant plasma membrane and their possible roles. Plant Cell Env. 23 (2000) 1287-1302.
  • 5. Craig, T.A. and Crane, F.L. Evidence for transplasma membrane electron transport system in plant cells. Proc. Ind. Acad. Sci. 90 (1981) 150-155.
  • 6. Federico, R. and Giartosio, C.E. A transplasmamembrane electron transport system in maize roots. Plant Physiol. 73 (1983) 182-184.
  • 7. Rubinstein, B., Stern, A.I. and Stout, R.G. Redox activity at the surface of oat root cells. Plant Physiol. 76 (1984) 386-391.
  • 8. Menckhoff, M. and Lüthje, S. Transmembrane electron transport in sealed and NAD(P)H-loaded right-side-out plasma membrane vesicles isolated from maize (Zea mays L.) roots. J. Exp. Bot. 55 (2004) 1343-1349.
  • 9. Rubinstein, B. and Stern, A.I. Relationship of transplasmamembrane redox activity to proton and solute transport by roots of Zea mays. Plant Physiol. 80 (1986) 805-811.
  • 10. Böttger, M. and Lüthen, H. Possible linkage between NADH-oxidation and proton secretion in Zea mays L. roots. J. Exp. Bot. 37 (1986) 666-675.
  • 11. Barr, R. The possible role of redox-associated protons in growth of plant cells. J. Bioenerg. Biomemb. 23 (1991) 443-467.
  • 12. Döring, O., Lüthje, S., Hilgendorf, F. and Böttger, M. Membrane depolarization by hexacyanoferrate (III), hexabromoiridiate (IV) and hexachloroiridiate (IV). J. Exp. Bot. 41 (1990) 1055-1061.
  • 13. Grabov, A. and Böttger, M. Are redox reactions involved in regulation of K+ channels in the plasma membrane of Limnobium stoloniferum root hairs? Plant Physiol. 105 (1994) 927-935.
  • 14. Barr., R. and Böttger, M. The effect of chloro-derivatives of indoleacitic acid on plasma membrane electron transport and proton excretion. Proc. Ind. Acad. Sci. 99 (1991) 129-136.
  • 15. Carrasco-Luna, J., Calatayud, A., González-Darós, F. and del Valle-Tascón, S. Hexacyanoferrate (III) stimulation of elongation in coleoptile segments from Zea mays L. Protoplasma. 184 (1995) 63-71
  • 16. Davies, P.J. Plant hormones. Biosynthesis, signal transduction, action. eds. Kluwer Academic Publishers, (2004) 204-220.
  • 17. Taiz, L. and Zeiger, E. Plant Physiology. 3rd edn. Sinauer Associates, Inc., Publishers (2002).
  • 18. Engvild, K.C. Natural chlorinated auxins labelled with radioactive chloride in immature seeds. Physiol. Plant. 34 (1975) 286-287.
  • 19. Engvild, K.C. Simple identification of natural chlorinated auxin in pea by thin layer chromatography. Physiol. Plant. 48 (1980) 435-437.
  • 20. Engvild, K.C., Egsgaard, H. and Larsen, E. Gass chromatographic-mass spectrometric identification of 4-chloroindole-3-acetic acid methyl ester in immature green peas. Physiol. Plant. 42 (1978) 365-368.
  • 21. Engvild, K.C., Egsgaard, H. and Larsen, E. Determination of 4-chloroindole-3-acetic acid methyl ester in Lathyrus, Vicia and Pisum by gas chromatography-mass spectrometry. Physiol. Plant. 48 (1980) 499-503.
  • 22. Hofinger, M. and Böttger, M. Identification by GC-MS of 4-chloroindolilacetic acid and its methyl ester in immature Vicia faba seeds. Phytochem. 18 (1979) 653-654.
  • 23. Katayama, M., Thiruvikraman, S.V. and Marumo, S. Identification of 4-chloroindole-3-acetic acid and its methyl ester in immature seeds of Vicia amurensis (the tribe Viciaeae) and their absence from three species of Phaseoleae. Plant Cell Physiol. 28 (1987) 383-386.
  • 24. Böttger, M., Engvild, K.C. and Soll, H. Growth of Avena coleoptiles and pH drop of protoplast suspensions induced by chlorinated indoleacetic acids. Planta 140 (1978) 89-92.
  • 25. Pless, T., Böttger, M., Hedden, P. and Grabe, J. Occurrence of 4-Clindoleacetic acid in broad beans and correlation of its levels with seeds development. Plant Physiol. 74 (1984) 320-323.
  • 26. Ahmad, A., Anderson, A.S. and Engvild, K.C. Rooting, growth and ethylene evolution of pea cuttings in response to chloroindole auxins. Physiol. Plant. 69 (1987) 137-140.
  • 27. Hatano, T., Katayama, M. and Marumo, S. 5,6-dichloroindole-3-acetic acid as a potent auxin: its synthesis and biological activity. Experientia 43 (1987) 1237-1239.
  • 28. Fischer, C., Lüthen, H., Böttger, M. and Hertel, R. Initial transient growth inhibition in maize coleoptiles following auxin application. J. Plant Physiol. 141 (1992) 88-92.
  • 29. Rescher, U., Walther, A., Schiebl, C. and Klämbt, D. In vitro binding affinities of 4-chloro-, 2-methyl-, 4-methyl-, and 4-ethyl-indoleacetic acid to auxin-binding protein 1 (ABP1) correlate with their growth- stimulating activities. J. Plant Growth Reg. 15 (1996) 1-3.
  • 30. Karcz,W., Lüthen, H. and Böttger, M. Comparative investigation of IAA and 4-Cl-IAA-induced growth and proton secretion in maize coleoptile segments. Plant Physiol. and Biochem. Spec. Iss. Abstract S01-14, (1996) 7
  • 31. Karcz, W., Lüthen, H. and Böttger, M. Effect of IAA and 4-Cl-IAA on growth rate in maize coleoptile segments. Acta Physiol. Plant. 21 (1999) 133-139.
  • 32. Karcz, W. and Burdach, Z. A comparision of the effects of IAA and 4-ClIAA on growth, proton secretion and membrane potential in maize coleoptile segments. J. Exp. Bot. 53 (2002) 1089-1098.
  • 33. Böttger, M. and Hilgendorf, F. Hormone action on transmembrane electron and H+ transport. Plant Physiol. 86 (1988) 1038-1043
  • 34. Lüthen, H., Hilgendorf, F. and Böttger, M. Effect of auxin on growth, proton secretion and transmembrane electron transfer in intact maize roots. in: Structural and functional aspects of transport in roots (Loughman B.C. et al., Eds.), Kluwer Academic Publishers, 1989, 63-67.
  • 35. Hilgendorf, F. and Böttger, M. Influence of temperature on proton secrection and hexacyanoferrate (III) reduction of Zea mays L. roots. Plant Physiol. 101 (1993) 1340-1353.
  • 36. Lüthen, H. and Böttger, M. Induction of elongation in maize coleoptiles by hexachloroiridate and its interrelation with auxin and fusicoccin action. Physiol. Plant. 89 (1993) 77-86.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-5bfd2570-e32b-4380-9aa1-716ec70df15b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.