PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 47 | 3 |

Tytuł artykułu

Animal electricity, Ca2plus and muscle contraction. A brief history of muscle research

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This brief review attempts to summarize some of the major phases of muscle research from Leeuwenhoek's description of sarcomeres in 1674, through Galvani's observation of animal electricity in 1791, to the discovery of Ca2+ as the key messenger in the coupling of nerve excitation to muscle contraction. The emerging molecular mechanism of the contraction process is one of the great achievements of biology, reflecting the intimate links between physics, chemistry and the life Sciences in the solution of biological problems.

Wydawca

-

Rocznik

Tom

47

Numer

3

Opis fizyczny

p.493-516

Twórcy

  • State University of New York, 750 East Adams Street, Syracuse, NY 13210-2339, USA

Bibliografia

  • 1. Needham, D.M. (1971) Machina Carnis. The Biochemistry of Muscular Contraction in its His­torical Development. Cambridge University Press, Cambridge.
  • 2. Leeuwenhoek, A. van (1939) The collected let­ters of Antoni van Leeuwenhoek (edited by a Committee of Dutch Scientists) III. p. 385 ff, Letter to the Royal Society of London ad­dressed to Mr. R. Hooke, Swets and Zeitlinger, Amsterdam.
  • 3. Hoole, S. (1798) Select works of A. van Leeuwenhoek, II pt. 3, p. 113, London.
  • 4. Croone, W. (1675) An Hypothesis of the Struc­ture of a Muscle and the reason of its Contrac­tion; from Lectures to Barber Surgeons read in the Surgeon's Theatre, Anno 1674, 1675; in Robert Hooke, Philosophical Collections No. 2, Section 8, p. 22, 1675.
  • 5. Galvani, A. & Aldini, J. (1792) De viribus electricitatis in motu musculari commen- tarius. Apud Societatem Typographicam. Translated in Abhandlung über die Kräfte der Electricität bei der Muskelbewegung, W. En­gelmann, Leipzig, 1894.
  • 6. Fulton, J.F. (1930) Selected Reading in the His­tory of Physiology; pp. 209-213, Charles C. Thomas, Publisher, Springfield, Illinois/ Balti­more.
  • 7. Piccolino, M. (1997) Luigi Galvani and animal electricity: Two centuries after the foundation of electrophysiology. Trends Neurosci. 20, 443-448.
  • 8. Piccolino, M. (2000) The bicentennial of the Voltaic battery (1800-2000): The artificial electric organ. Trends Neurosci. 23,147-151.
  • 9. Volta, A. (1800) On the electricity excited by the mere contact of conducting substances of different species. Phil. Trans. Roy. Soc. Lon­don 90, 403-431.
  • 10a.Schuetze, S.M. (1983) The discovery of the ac­tion potential. Trends Neurosci. 6, 164-168.
  • 10b.De Weer, P. (2000) A century of thinking about cell membranes. Annu. Rev. Physiol. 62, 919-926.
  • 11a.Hodgkin, A.L. (1958) The Croonian Lecture. Ionic movements and electrical activity in gi­ant nerve fibers. Proc. Roy. Soc. London, Se­ries B 148, 1-37.
  • 11b.Hodgkin, A.L. (1964) The Conduction of Ner­vous Impulse. Sherrington Lectures 7, Liver­pool University Press, Liverpool.
  • 12. Huxley, A.F. (1977) Looking back on muscle; in The Pursuit of Nature. Informal Essays on the History of Physiology (Hodgkin, A.L., Huxley, A.F., Feldberg, W., Rushton, W.A.H., Greg­ory, R.A. & McLance, R.A., eds.) pp. 23-64, Cambridge University Press, Cambridge.
  • 13. Huxley, A.F. (1980) Reflections on Muscle. Princeton University Press, Princeton.
  • 14. Kühne, W. (1859) Untersuchungen über Be­wegungen und Veränderung der contractilen Substanzen. Arch. Anat. Physiol. Wissensch. Med.. 748-835.
  • 15. Kühne, W. (1864) Untersuchungen über das Protoplasma und die Contractilität. Engel­mann, Leipzig.
  • 16. Kühne, W. (1888) On the origin and causation of vital movement. Proc. Roy. Soc. London 44, 427-448.
  • 17. Halliburton, W.D. (1887) On muscle plasma. J. Physiol. (London) 8, 133-202.
  • 18. Finck, H. (1968) On the discovery of actin. Sci­ence 160, 332.
  • 19. Mommaerts, W.F.H.M. (1992) Who discov­ered actin? BioEssays 14, 57-59.
  • 20. Retzius, G. (1881) Zur Kenntnis der quer­gestreiften Muskelfaser. Biologische Untersu­chungen Series I, pp.1-26.
  • 21. Retzius, G. (1890) Muskelfibrille und Sarco- plasma. Biologische Untersuchungen. Neue Folge 1, 51-88.
  • 22. Veratti, E. (1902) Richerche sulle fine struttura della fibra muscolare striata. Memo- rieInst. Lomb. Cl. Sci. Mat. eNat. 19, 87-133.
  • 23. Veratti, E. (1961) Investigations on the fine structure of striated muscle fiber (translation of the paper of 1902 by Bruni, C., Bennett, J.S. & de Koven, D.). J. Biophys. Biochem. Cytol. 10, Part 2, 3-59.
  • 24. Porter, K.R. (1961) The sarcoplasmic reticu- lum. Its recent history and present status. J. Biophys. Biochem. Cytol. 10, Part 2, 219-226.
  • 25. Ringer, S. (1883) A further contribution re­garding the influence of the different constitu­ents of the blood on the contraction of the heart. J. Physiol. (London) 4, 29-42.
  • 26. Ringer, S. (1886) Further experiments regard­ing the influence of small quantities of lime, potassium and other salts on muscular tissue. J. Physiol. (London) 7, 291-308.
  • 27. Ringer, S. & Buxton, L.W. (1887) Concerning the action of calcium, potassium and sodium salts upon the eel's heart and upon the skeletal muscles of the frog. J. Physiol. (London) 8, 15-19.
  • 28. Ringer, S. (1887) Regarding the action of lime, potassium and sodium salts on skeletal mus­cle. J. Physiol. (London) 8, 20-24.
  • 29. Campbell, A.K. (1983) Intracellular Calcium - its Universal Role as Regulator. John Wiley and Sons, New York.
  • 30. Nayler, W.G. (1984) Sydney Ringer - physi­cian and scientist. J. Mol. Cell Cardiol. 16, 113-116.
  • 31. Smith, D.S. (1961) Reticular organization within the striated muscle cell. An historical survey of light microscopic studies. J. Biophys. Biochem. Cytol. 10, Part 2, 61-87.
  • 32. Bowman, W. (1890) On the minute structure and movements of voluntary muscle. Phil. Trans. Roy. Soc. 130, Part 2, 457-501.
  • 33. Nystrom, G. (1897) über die Lymphbanen des Herzens. Arch. Anat. Physiol. (Anat. Abt.) 21, 361-378.
  • 34. Holmgren, E. (1908) über die Trophospongien der quergestreiften Muskelfasern, nebst Be­merkungen über die allgemeinen Bau dieser Fasern. Arch. Mikr. Anat. 71, 165-247.
  • 35. Huxley, A.F. (1971) The Croonian Lecture 1967. The activation of striated muscle and its mechanical response. Proc. Roy. Soc. London, Series B 178, 1-27.
  • 36. Franzini-Armstrong, C. (1994) The sarcoplas­mic reticulum and the transverse tubules; in Myology, (Engel, A.G. & Franzini-Armstrong, C., eds.) 2nd edn., vol. 1, pp. 176-199, McGraw-Hill Inc., New York.
  • 37. Peachey, L.D. & Franzini-Armstrong, C. (1983) Structure and function of membrane systems of skeletal muscle cells; in Handbook of Physiology. Section 10. Skeletal Muscle (Peachey, L.D., Adrian, R.H. & Geiger, S.R., eds.) pp. 23-71, American Physiological Soci­ety, Bethesda.
  • 38. Franzini-Armstrong, C. & Peachey, L.D. (1981) Striated muscle — contractile and con­trol mechanisms. J. CellBiol. 91,166s-186s.
  • 39. Bennett, H.S. (1960) The structure of striated muscle as seen by the electron microscope; in The Structure and Function of Muscle (Bourne, G.H., ed.) vol. 1, pp. 137-181, Academic Press, New York.
  • 40. Simpson, F.O. & Oertelis, S.J. (1962) The fine structure of sheep myocardial cells: Sarco- lemmal invaginations and the transverse tubu­lar system. J. CellBiol. 12, 91-100.
  • 41. Nelson, D.A. & Benson, E.S. (1963) On the structural continuities of the transverse tubu­lar system of rabbit and human myocardial cells. J. CellBiol. 16, 297-313.
  • 42. Franzini-Armstrong, C. & Porter, K.R. (1964) Sarcolemmal invaginations and the T system in fish skeletal muscle. Nature 202, 355-357.
  • 43. Franzini-Armstrong, C. & Porter, K.R. (1964) Sarcolemmal invaginations constituting the T-system in fish muscle fibers. J. Cell Biol. 22, 675-696.
  • 44. Page, S. (1964) The organization of the sarco- plasmic reticulum in frog muscle. J. Physiol. (London) 175, 10P-11P.
  • 45. Huxley, H.E. (1964) Evidence for continuity between the central elements of the triads and extracellular space in frog sartorius muscle. Nature 202, 1067-1071.
  • 46. Simpson, F.O. (1965) The transverse tubular system in mammalian myocardial cells. Amer. J. Anat. 117, 1-18.
  • 47. Rayns, D.G., Simpson, F.O. & Bertaud, W.S. (1967) Transverse tubule apertures in mam­malian myocardial cells: Surface array. Sci­ence 156, 656-657.
  • 48. Franzini-Armstrong, C. (1970) Studies of the triad. I. Structure of the junction in frog twitch fibers. J. CellBiol. 47, 488-499.
  • 49. Endo, M. (1966) Entry of fluorescent dyes into the sarcotubular system of the frog muscle. J. Physiol. (London) 185, 224-238.
  • 50. Hill, D.K. (1964) The space accessible to albu­min within the striated muscle fiber of the toad. J. Physiol. (London) 175, 275-294.
  • 51. Franzini-Armstrong, C. & Jorgensen, A.O. (1994) Structure and development of E-C cou­pling units in skeletal muscle. Annu. Rev. Physiol. 56, 509-534.
  • 52. Schneider, M.F. (1994) Control of calcium re­lease in functioning skeletal muscle. Annu. Rev. Physiol. 56, 463-484.
  • 53. Peachey, L.D. (1965) The sarcoplasmic reticu­lum and transverse tubules of the frog's sarto- rius. J. CellBiol. 25, 209-231.
  • 54. Porter, K.R. & Palade, G.E. (1957) Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J. Bio- phys. Biochem. Cytol. 3, 269-300.
  • 55. Robertson, J.D. (1956) Some features of the ultrastructure of reptilian skeletal muscle. J. Biophys. Biochem. Cytol. 2, 369-379.
  • 56. Robertson, J.D. (1989) Membranes, molecu­les, nerves, and people; in Membrane Trans­port. People and Ideas (Tosteson, D.C., ed.) pp. 51-124, American Physiological Society, Bethesda.
  • 57. Fawcett, D.W. & Revel, J.P. (1961) The sarco- plasmic reticulum of a fast-acting fish muscle. J. Biophys. Biochem. Cytol. 10, Part 2, 89-109.
  • 58. Andersson-Cedergren, E. (1959) Ultrastruc­ture of motor end-plate and sarcoplasmic retic- ulum components of mouse skeletal muscle fi­ber as revealed by three-dimensional recon­structions from serial sections. J. Ultrastruc­ture Res. (Suppl.) 1, 1-191.
  • 59. Revel, J.P. (1962) The sarcoplasmic reticulum of bat cricothyroid muscle. J. Cell Biol. 12, 571-588.
  • 60. Reger, J.F. (1961) The fine structure of neuro­muscular junctions and the sarcoplasmic retic­ulum of extrinsic eye muscles of Fundulus heteroclitus. J. Biophys. Biochem. Cytol. 10, Part 2, 111-121.
  • 61. Huxley, A.F. & Taylor, R.E. (1955) Function of Krause's membrane. Nature 176, 1063.
  • 62. Huxley, A.F. & Taylor, R.E. (1958) Local acti­vation of striated muscle fibres. J. Physiol. (London) 144, 426-441.
  • 63. Podolsky, R.J. (1989) Membrane transport in excitation-contraction coupling; in Membrane Transport. People and Ideas (Tosteson, D.C., ed.) pp. 291-302, American Physiological So­ciety, Bethesda.
  • 64. Ashley, C.C., Mulligan, I.P. & Lea, T.J. (1991) Ca2+ and activation mechanisms in skeletal muscle. Quart. Rev. Biophys. 24, 1-73.
  • 65. Rios, E. & Pizarro, G. (1991) Voltage sensor of excitation contraction coupling in skeletal muscle. Physiol. Rev. 71, 849-908.
  • 66. Meissner, G. (1994) Ryanodine receptor/Ca2+ release channels and their regulation by en­dogenous effectors. Annu. Rev. Physiol. 56, 485-508.
  • 67a.Hill, A.V. (1948) On the time required for dif­fusion and its relation to processes in muscle. Proc. Roy. Soc. London, Series B 135, 446­453.
  • 67b.Hill, A.V. (1949) The abrupt transition from rest to activity in muscle. Proc. Roy. Soc. Lon­don, Series B 136, 399-420.
  • 68. Weber, A. (1972) Pysiological regulation of the activity of the actomyosin system; in Mo­lecular Bioenergetics and Macromolecular Bio­chemistry; pp. 111-117, Springer Verlag, Berlin.
  • 69. Ebashi, S. & Endo, M. (1968) Calcium and muscle contraction. Progr. Biophys. Mol. Biol. 18, 123-183.
  • 70. Ebashi, S. (1980) The Croonian Lecture, 1979. Regulation of muscle contraction. Proc. Roy. Soc. London, Series B 207, 259-286.
  • 71. Hasselbach, W. (1989) From frog lung to cal­cium pump; in Membrane Transport. People and Ideas (Tosteson, D.C., ed.) pp. 187-201, American Physiological Society, Bethesda.
  • 72. Stiles, P.G. (1903) On the rhythmic activity of the oesophagus and the influence upon it of various media. Am. J. Physiol. 5, 338-357.
  • 73. Armstrong, C.M., Bezanilla, F.M. & Horowicz, P. (1972) Twitches in the presence of ethylene glycol bis (^-amino-ethylether)-^,^'-tetraace- tic acid. Biochim. Biophys. Acta 267, 605-608.
  • 74. Bianchi, C.P. & Shanes, A.M. (1959) Calcium influx in skeletal muscle at rest, during activ­ity and during potassium contraction. J. Gen. Physiol. 42, 803-815.
  • 75. Bianchi, C.P. & Shanes, A.M. (1960) The effect of the ionic milieu on the emergence of radio- calcium from tendon and from sartorius mus­cle. J. Cell. Comp. Physiol. 55, 67-76.
  • 76. Winegrad, S. (1961) The possible role of cal­cium in excitation-contraction coupling of heart muscle. Circulation 24, 523-529.
  • 77. Gibbons, W.R. & Zygmunt, A.C. (1992) Excita­tion-contraction coupling in heart; in The Heart and Cardiovascular System (Fozzard, H.A., Haber, E., Jennings, R.B., Katz, A.M. & Morgan, H.E., eds.) 2nd edn., vol. 2, pp. 1249­1279, Raven Press Ltd., New York.
  • 78. Langer, G.A. (1992) Calcium and the heart: Exchange at the tissue, cell and organelle lev­els. FASEB J. 6, 893-902.
  • 79. Thomas, C., Lipp, P., Tovey, S.C., Berridge, M.J., Li, W., Tsien, R.Y. & Bootman, M.D. (2000) Microscopic properties of elementary Ca2+release sites in nonexcitable cells. Curr. Biol. 10, 8-15.
  • 80. Reznikoff, P. & Chambers, R. (1927) Micru- rgical studies in cell physiology. III. The action of CO2 and some salts of Na, Ca and K on the protoplasm of Amoeba dubia. J. Gen. Physiol. 10, 731-738.
  • 81. Pollack, H. (1928) Micrurgical studies in cell physiology. VI. Calcium ions in living proto­plasm. J. Gen. Physiol. 11, 539-545.
  • 82. Chambers, R. & Hale, H.P. (1932) The forma­tion of ice in protoplasm. Proc. Roy. Soc. Lon­don, Series B 110, 336-352.
  • 83. Keil, E.M. & Sichel, F.J.M. (1936) The injec­tion of aqueous solutions including acetylcho­line into the isolated muscle fiber. Biol. Bull. 71, 402.
  • 84. Weise, E. (1934) Untersuchungen zur Frage der Verteilung und der Bindungsart des Cal­cium im Muskel. Naunyn-Schmiedeberg's Arch. Exp. Path. Pharm. 176, 367-372.
  • 85. Wacker, L. (1929) Zur Kenntniss der Vor­gänge bei der Arbeit und Ermüdung des Muskels. Klin. Wochenschrift 8, 244-249.
  • 86. Beznak, A. (1931) über die Erhohung des Calciumgehaltes des Blutserums bei Stry- chninvergiftung. Naunyn-Schmiedeberg's Arch. Exptl. Pathol. Pharmakol. 160, 397-400.
  • 87. Lissak, K. (1934) Beitrage zur Frage der Beziehung zwischen Tetanie und Tetanus. Naunyn-Schmiedeberg's Arch. Exptl. Pathol. Pharmakol. 176, 425-428.
  • 88. Woodward, A.A., Jr. (1949) The release of ra­dioactive 45Ca from muscle during stimula­tion. Biol. Bull. 97, 264.
  • 89. Bailey, K. (1942) Myosin and adenosine- triphosphatase. Biochem. J. 36, 121-139.
  • 90. Heilbrunn, L.V. (1940) The action of calcium on muscle protoplasm. Physiol. Zool. 13, 88-94.
  • 91. Heilbrunn, L.V. (1943) An Outline of General Physiology; 2nd edn., Saunders, Philadelphia.
  • 92. Heilbrunn, L.V. (1956) The Dynamics of Living Protoplasm, Academic Press, New York.
  • 93. Heilbrunn, L.V. & Wiercinsky, F.J. (1947) Ac­tion of various cations on muscle protoplasm. J. Cell. Comp. Physiol. 19, 15-32.
  • 94. Kamada, T. & Kinoshita, H. (1943) Distur­bances initiated from the naked surface of muscle protoplasm. Japan. J. Zool. 10, 469­493.
  • 95. Campbell, A.K. (1986) Lewis Victor Heil­brunn. Pioneer of calcium as an intracellular regulator. Cell Calcium 7, 287-296.
  • 96. Szent-Györgyi, A. (1945) Studies on muscle. Acta Physiol. Scand. 9, Suppl. XXV.
  • 97. Szent-Györgyi, A. (1951) Chemistry of Muscu­lar Contraction; 2nd edn., Academic Press, New York.
  • 98. Raaflaub, J. (1956) Applications of metal buff­ers and metal indicators in biochemistry. Methods Biochem. Anal. 3, 301-325.
  • 99. Chaberek, S. & Martell, A.E. (1959). Organic sequestering agents, Wiley, New York.
  • 100. Weber, A. (1959) On the role of calcium in the activity of adenosine-5'-triphosphate hy­drolysis by actomyosin. J. Biol. Chem. 234, 2764-2769.
  • 101. Weber, A. & Herz, R. (1961) Requirement for calcium in the synaeresis of myofibrils. Biochem. Biophys. Res. Commun. 6,364-368.
  • 102. Weber, A. & Winicur, S. (1961) The role of calcium in the superprecipitation of actomy- osin. J. Biol. Chem. 236, 3198-3202.
  • 103. Weber, A. & Herz, R. (1963) The binding of calcium to actomyosin systems in relation to their biological activity. J. Biol. Chem. 238, 599-605.
  • 104. e e . e . eiss . n the mechanism o the e a in e ect o a mented sa co asmic etic m. J. Gen. Physiol. 46 - .
  • 105. e e . e . eiss . o e o ca ci m in cont action and e a ation o m sc e. Fed. Proc. 23 - .
  • 106. e e . e . eiss . he e ation o m o i i a activit ca ci m. Proc. Roy. Soc. London, e ies 160
  • 107. e e . ne i ed ca ci m t ans o t and e a in acto s. Curr. Top. Bio-energ. 1 - .
  • 108. ashi . a ci m indin and e a ation in the actom osin s stem. J. Biochem. (Tokyo) 48 - .
  • 109. ashi . ashi . ie . he e ect o and its ana o es once inated m sc e ies and m osin adeno sine t i hos hat ase. J. Biochem. (Tokyo) 47
  • 110. ashi . a ci m indin activit o vesic a e a in acto . J. Biochem. (Tokyo) 50 - .
  • 111. ashi . he o e o e a in acto in cont action e a ation c c e o m sc e. Progr. Theoretical Physics, . 17 - .
  • 112. ato i ects o a and a ions on the e cita i it o iso ated m o i i s in Mo­lecular Biology of Muscular Contraction a shi . osa a . e ine . onom a. eds. vo . . - se vie mste dam.
  • 113. odo s . . ost antin . . e ation ca ci m o the cont action and e a ation o m sc e ies. Fed. Proc. 23
  • 114. o t eh . ade .. e ..he de endence o cont action and e a ation o m sc e i e s om the c a Maia squinado on the inte na concent ation o ee ca ci m ions. Biochim. Biophys. Acta 79 - .
  • 115. in s . . nt ace a a mea s ements in The Heart and the Cardiovascu­lar System nd edn. o a d . . et al., eds. . - a ven ess td. eo .
  • 116. id a . . sh e . . a ci mt ansients in sin e m sc e i e s. Biochem. Biophys. Res. Commun. 29 - .
  • 117. sh e . . id a . . n the e ationshi s et een mem ane otentia ca ci m t ansient and tension in sin e a nac e m sc e i es. J. Physiol. 209
  • 118. o sis . . ' onno . . a ci m e ease and ea so tion in the sa to i sm sc e o the toad. Biochem. Biophys. Res. Commun. 25 - .
  • 119. sien . . nt ace a si na t ans d ction in dimensions — om mo ec a desi n to h sio o . Am. J. Physiol. 263
  • 120. sien . . onit o in ce ca ci m in Calcium as a Cellular Regulator aa o i. ee . eds. . - od nivesit ess e o .
  • 121. sh e . . i iths . . ea . . ian . . a me . . imme tt . .a nac e m sc e a. Rev. Physiol. Biochem. Pharmacol. 122 - .
  • 122. i i . oca i ed int ace a ca ci m si na in in m sc e a ci m s a s and ca ci m a s. Annu. Rev. Physiol. 61
  • 123. n e ha dt . . imo va . .osin and adenosine t i hos hat ase. Na­ture 144 - .
  • 124. n e ha dt . . denosine t i hos hat ase o e ties o m osin. Adv. Enzymol. 6 - .
  • 125. n e ha dt . . i e and science. Annu. Rev. Biochem. 51 - .
  • 126. an a . ent o i . ) Prepara­tion and properties of myosin A and B. t diesom the nstit t e o edica hemist ni ve sit o e ed o . - .
  • 127. Straub, F.B. (1942) Actin. Studies from the Institute of Medical Chemistry, University of Szeged, vol. 2, 3-15.
  • 128. Straub, F.B. (1943) Actin II. Studies from the Institute of Medical Chemistry, University of Szeged, vol. 3, 23-37.
  • 129. Szent-Györgyi, A. (1941) The Contraction of Myosin Threads. Studies from the Institute of Medical Chemistry, University of Szeged, vol. 1, 17-26.
  • 130. Szent-Györgyi, A. (1963) Lost in the twenti­eth century. Annu. Rev. Biochem. 32, 1-14.
  • 131. Moss, R.W. (1988) Free Radical. Albert Szent- Györgyi and the Battle over Vitamin C. Para­gon House Publ., New York.
  • 132. Szent-Györgyi, A. (1942) The Reversibility of the Contraction of Myosin Threads. Studies from the Institute of Medical Chemistry, Uni­versity of Szeged, vol. 2, 25-26.
  • 133. Marsh, B.B. (1951) A factor modifying mus­cle fiber syneresis. Nature 167, 1065-1066.
  • 134. Marsh, V.B. (1952) The effects of adenosine triphosphate on the fibre volume of a muscle homogenate. Biochim. Biophys. Acta 9, 247- 260.
  • 135. Bendall, J.R. (1952) Effect of the "Marsh" factor on the shortening of muscle fiber mod­els in the presence of adenosine triphos- phate. Nature 170, 1058-1060.
  • 136. Bendall, J.R. (1953) Further observations on a factor (the "Marsh" factor) effecting relax­ation of ATP-shortened muscle fiber models and the effect of Ca and Mg ions upon it. J. Physiol. (London) 121, 232-254.
  • 137. Bendall, J.R. (1958) Relaxation of glycerol- treated muscle fibers by ethylenediamine tetraacetate. Arch. Biochem. Biophys. 73, 283-285.
  • 138. Bendall, J.R. (1969) Muscles, Molecules, Movement. American Elsevier Publ. Co., New York.
  • 139. Hasselbach, W. & Weber, H.H. (1953) Der Einfluss des MB-Factors auf die Kontraktiondes Faser modells. Biochim. Biophys. Acta 11, 160-161.
  • 140. Fujita, K. (1954) Action of adenosine deriva­tives on muscle activity. Part II. Glycerol- treated muscle and "relaxing factor". Folia Pharmacol. Japonica 50, 183-192.
  • 141. Kumagai, H., Ebashi, S. & Takeda, F. (1955) Essential relaxing factor in muscle other than myokinase and creatine phospho- kinase. Nature 176, 166.
  • 142. Ebashi, S. (1957) Kielley-Meyerhof's gran­ules and the relaxation of glycerinated mus­cle fibers. Conference on the Chemistry of Muscle Contraction; pp. 89-94, Igaku Shoin Ltd, Osaka.
  • 143. Ebashi, S. (1958) A granule-bound relaxation factor in skeletal muscle. Arch. Biochem. Biophys. 76, 410-423.
  • 144. Kielley, W.N. & Meyerhof, O. (1948) A new magnesium-activated adenosine triphospha- tase from muscle. J. Biol. Chem. 174, 387-388.
  • 145. Kielley, W.W. & Meyerhof, O. (1948) Studies on adenosine triphosphatase of muscle. II. A new magnesium activated adenosine triphos­phatase. J. Biol. Chem. 176, 591-601.
  • 146. Kielley, W.W. & Meyerhof, O. (1950) Studies on adenosine triphosphatase of muscle. III. The lipoprotein nature of the magnesium ac­tivated adenosine triphosphatase. J. Biol. Chem. 183, 391-401.
  • 147. Muscatello, U., Andersson-Cedergren, E., Azzone, G.G. & Von der Decken, A. (1961) The sarcotubular system of frog skeletal muscle. A morphological and biochemical study. J. Biophys. Biochem. Cytol. 10, Part 2, 201-218.
  • 148. Muscatello, U., Andersson-Cedergren, E. & Azzone, G.F. (1962) The mechanism of mus­cle-fiber relaxation, adenosine triphospha- tase and relaxing activity of the sarcotubular system. Biochim. Biophys. Acta 63, 55-74.
  • 149. Ebashi, S. & Lipmann, F. (1962) Adenosine triphosphate-linked concentration of cal­cium ions in a particulate fraction of rabbit muscle. J. CellBiol. 14, 389-400.
  • 150. Hasselbach, W. & Makinose, M. (1961) Die Calciumpumpe der "Erschlaffungsgrana" des Muskels und ihre Abhängigkeit von der ATP-Spaltung. Biochem. Z. 333, 518-528.
  • 151. Hasselbach, W. & Makinose, M. (1962) ATP and active transport. Biochem. Biophys. Res. Commun. 7, 132-136.
  • 152. Hasselbach, W. & Makinose, M. (1963) über den Mechanismus des Calciumtransportes durch die Membranen des Sarkoplasmatis- chen Reticulums. Biochem. Z. 339, 94-111.
  • 153. Vasington, F. & Murphy, J.V. (1962) Ca2+ up­take by rat kidney mitochondria and its de­pendence on respiration and phospho- rylation. J. Biol. Chem. 237, 2670-2677.
  • 154. Hasselbach, W. (1964) Relaxation and the sarcotubular calcium pump. Fed. Proc. 23, 909-912.
  • 155. Costantin, L.L., Franzini-Armstrong, C. & Podolsky, R.J. (1965) Localization of cal­cium-accumulating structures in striated muscle fibers. Science 147, 158-160.
  • 156. Podolsky, R.J., Hall, T. & Hatchett, S.L. (1970) Identification of oxalate precipitates in striated muscle fibers. J. Cell Biol. 44, 699-702.
  • 157. Skou, J.C. (1957) The influence of some cat­ions on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23, 394-401.
  • 158. Skou, J.C. (1960) Further investigations on a Mg2 + Na+ activated adenosine triphos- phatase, possibly related to the active, linked transport of Na and K across the nerve membrane. Biochim. Biophys. Acta 42,6-23.
  • 159. Skou, J.C. (1989) Sodium-potassium pump; in Membrane Transport. People and Ideas (Tosteson, D.C., ed.) pp. 155-185, American Physiological Society, Bethesda.
  • 160. Post, R.L. & Jolly, P.C. (1957) The linkage of sodium, potassium and ammonium active transport across the human erythrocyte membrane. Biochim. Biophys. Acta 25, 119-128.
  • 161. Post, R.L., Merritt, C.R., Kinsolving, C.R. & Albright, C.D. (1960) Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the hu­man erythrocyte. J. Biol. Chem. 235, 1796-1802.
  • 162. Post, R.L. (1989) Seeds of sodium, potassium ATPase. Annu. Rev. Physiol. 51, 1-15.
  • 163. Moller, J.V., Juul, B. & Lemaire, M. (1996) Structural organization, ion transport and energy transduction of P-type ATPases. Biochim. Biophys. Acta 1286, 1-51.
  • 164. Geering, K. (2000) Topogenic motifs in P-type ATPases. J. Membr. Biol. 174, 181-190.
  • 165. Mueller, H. (1960) The action of relaxing fac­tor on actomyosin. Biochim. Biophys. Acta 39, 93-103.
  • 166. Bozler, E. (1954) Relaxation in extracted muscle fibers. J. Gen. Physiol. 38,149-159.
  • 167. Bozler, E. (1955) Binding of calcium and magnesium by the contractile elements. J. Gen. Physiol. 38, 735-742.
  • 168. Watanabe, S. & Sleator, W., Jr. (1957) EDTA relaxation of glycerol-treated muscle fibers and the effects of magnesium, calcium and manganese ions. Arch. Biochem. Biophys. 68, 81-101.
  • 169. Ebashi, F. (1961) Does EDTA bind to actomy- osin? J. Biochem. (Tokyo) 50, 77-78.
  • 170. Baird, G.D. & Perry, S.V. (1960) The inhibi­tory action of relaxing factor preparations on the myofibrillar adenosine triphospha- tase. Biochem. J. 77, 262-271.
  • 171. Makinose, M. & Hasselbach, W. (1965) Der Einfluss von Oxalat auf den Calcium Trans­port isolierter Vesikel des sarkoplasmatis- chen Reticulum. Biochem. Z. 343, 360-382.
  • 172. Martonosi, A. & Feretos, R. (1964) Sarco­plasmic reticulum. I. The uptake of calcium by sarcoplasmic reticulum fragments. J. Biol. Chem. 239, 648-658.
  • 173. Seidel, J.C. & Gergely, J. (1964) Studies on myofibrillar adenosine triphosphatase with calcium-free adenosine triphosphate. II. Con­cerning the mechanism of inhibition by the fragmented sarcoplasmic reticulum. J. Biol. Chem. 239, 3331-3335.
  • 174. Lorand, L. (1964) Relaxing particles of skele­tal muscle. Fed. Proc. 23, 905-908.
  • 175. Perry, S.V. & Grey, T.C. (1956) Ethylene- diamine tetraacetate and the adenosine triphosphatase activity of actomyosin. Bio- chem. J. 64, 5P.
  • 176. Ebashi, S. (1963) Third component partici­pating in the superprecipitation of natural actomyosin. Nature 200, 1010.
  • 177. Ebashi, S. & Ebashi, F. (1964) A new protein component participating in the super- precipitation of myosin B. J. Biochem. (To­kyo) 55, 604-613.
  • 178. Ebashi, S., Endo, M. & Ohtsuki, I. (1969) Control of muscle contraction. Quart. Rev. Biophys. 2, 351-384.
  • 179a.Ebashi, S. (1993) From the relaxing factor to troponin. Biomedical Res. 14, Suppl. 2, 1-7.
  • 179b.Ebashi, S., Endo, M. & Ohtsuki, I. (1999) Calcium in muscle contraction; in Calcium as a Cellular Regulator (Carafoli, E. & Klee, C., eds.) pp. 579-595, Oxford University Press, New York.
  • 180. Dux, L. (1993) Muscle relaxation and sarcoplasmic reticulum in different muscle types. Rev. Physiol. Biochem. Pharmacol. 122, 69-147.
  • 181. Martonosi, A. (1975) Membrane transport during development in animals. Biochim. Biophys. Acta 415, 311-333.
  • 182. Sarzala, M.G., Pilarska, M., Zubrzycka, E. & Michalak, M. (1975) Changes in the struc­ture, composition, and function of sarco- plasmic reticulum membrane during devel­opment. Eur. J. Biochem. 57, 25-34.
  • 183. Martonosi, A. (1982) The development of sarcoplasmic reticulum membranes. Annu. Rev. Physiol. 44, 337-355.
  • 184. Martonosi, A. (2000) The Development of Sarcoplasmic Reticulum, Harwood Academic Publishers, Amsterdam.
  • 185. Martonosi, A. (1994) The regulation of cal­cium by the sarcoplasmic reticulum; in Myology (Engel, A.G. & Franzini-Armstrong, C., eds.) 2nd edn., vol. 1, pp. 553-584, McGraw-Hill, New York.
  • 186. Jencks, W.P. (1989) How does a calcium pump pump calcium? J. Biol. Chem. 264, 18855-18858.
  • 187. MacLennan, D.H., Rice, W.J. & Green, N.M. (1997) The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+ -ATPase. J. Biol. Chem. 272, 28815-28818.
  • 188. Tada, M. (1992) Molecular structure and function of phospholamban in regulating the calcium pump from sarcoplasmic reticulum. Ann. N.Y. Acad. Sci. 671, 92-102.
  • 189. MacLennan, D.H., Brandl, C.J., Korczak, B. & Green, N.M. (1985) Amino acid sequence of a Ca2+ + Mg2+ dependent ATPase from rabbit muscle sarcoplasmic reticulum, de­duced from its complementary DNA se­quence. Nature 316, 696-700.
  • 190a.Taylor, K.A., Dux, L., Varga, S., Ting-Beall, H.P. & Martonosi, A. (1988) Analysis of two dimensional crystals of Ca2+-ATPase in sarcoplasmic reticulum. Methods Enzymol. 157, 271-289.
  • 190bPikula, S., Müllner, N., Dux, L. & Martonosi, A. (1988) Stabilization and crystallization of Ca2+-ATPase in detergent-solubilized sarco- plasmic reticulum. J. Biol. Chem. 263, 5277-5286.
  • 191. Martonosi, A.N., Taylor, K.A. & Pikula, S. (1991) The crystallization of the Ca2+- ATPase of sarcoplasmic reticulum; in Crys­tallization of Membrane Proteins (Michel, H., ed.) pp. 167-182, CRC Press, Boca Raton.
  • 192. Toyoshima, Ch., Nakasako, M., Nomura, H. & Ogawa, H. (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Ä resolution. Nature 405, 647-655.
  • 193a.Huxley, H.E. (1996) A personal view of mus­cle and motility mechanisms. Annu. Rev. Physiol. 58, 1-20.
  • 193b.Huxley, H.E. (2000) Past, present and fu­ture experiments on muscle. Phil. Trans. Roy. Soc. London, Series B 355, 539-543.
  • 194. Huxley, A.F. (2000) Mechanics and models of the myosin motor. Phil. Trans. Roy. Soc. Lon­don, Series B 355, 433-440.
  • 195. Rayment, I. & Holden, H.M. (1994) The three-dimensional structure of a molecular motor. Trends Biochem. Sci. 19, 129-134.
  • 196. Rayment, I., Smith, C. & Yount, R.G. (1996) The active site of myosin. Annu. Rev. Physiol. 58, 671-702.
  • 197a.Holmes, K.C. (1998) Muscle contraction; in The Limits of Reductionism in Biology, Novartis Foundation Symp. 213, pp. 76-92, John Wiley and Sons.
  • 197b.Holmes, K.C. & Geeves, M.A. (2000) The structural basis of muscle contraction. Phil. Trans. Roy. Soc. London, Series B 355, 419-431.
  • 198. Geeves, M.A. & Holmes, K.C. (1999) Struc­tural mechanism of muscle contraction. Annu. Rev. Biochem. 68, 687-728.
  • 199. Yanagida, T., Kitamura, K., Tanaka, H., Iwane, A.H. & Esaki, S. (2000) Single mole­cule analysis of the actomyosin motor. Curr. Opin. Cell Biol. 12, 20-25.
  • 200. Leavis, P.C. & Gergely, J. (1984) Thin fila­ment proteins and thin filament-linked regu­lation of vertebrate muscle contraction. CRC Crit. Rev. Biochem. 16, 235-305.
  • 201. Lehrer, S.S. (1994) The regulatory switch of the muscle thin filament. J. Muscle Res. Cell Motil. 15, 232-236.
  • 202. Perry, S.V. (1996) Molecular Mechanisms in Striated Muscle. Cambridge University Press, Cambridge.
  • 203. Kress, M., Huxley, H.E., Faruqi, A.R. & Hendrix, J. (1986) Structural changes during activation of frog muscle studied by time-re­solved X-ray diffraction. J. Mol. Biol. 188, 325-342.
  • 204. Strynadka, N.C.J. & James, M.N.G. (1991) Towards an understanding of the effects of calcium on protein structure and function. Curr. Opin. Struct. Biol. 1, 905-914.
  • 205. Farah, C.S. & Reinach, F.C. (1995) The tro­ponin complex and regulation of muscle con­traction. FASEB J. 9, 755-767.
  • 206. Szent-Györgyi, A.G. & Chantler, P.D. (1994) Control of contraction by calcium binding to myosin; in Myology, (Engel, A.G. & Franzini­Armstrong, C., eds.) 2nd edn., pp. 506-528, McGraw-Hill Inc., New York.
  • 207. Kendrick-Jones, J., Lehman, W. & Szent- Györgyi, A.G. (1970) Regulation in mollus- can muscles. J. Mol. Biol. 54, 313-326.
  • 208. Horowitz, A., Menice, C.B., Laporte, R. & Morgan, K.G. (1996) Mechanisms of smooth muscle contraction. Physiol. Rev. 76, 967­1003.
  • 209. Somlyo, A.P., Wu, X., Walker, L.A. & Somlyo, A.V. (1999) Pharmacomechanical coupling: The role of calcium, G proteins, kinases and phosphatases. Rev. Physiol. Biochem. Pharmacol. 134, 201-234.
  • 210. Marston, S. (1995) Ca2+ dependent protein switches in actomyosin-based contractile sys­tems. Int. J. Biochem. Cell Biol. 27, 97-108.
  • 211. Lehman, W. & Szent-Györgyi, A.G. (1975) Regulation of muscular contraction. Distri­bution of actin control and myosin control in the animal kingdom. J. Gen. Physiol. 66, 1-30.
  • 212. Ozawa, E. & Ebashi, S. (1967) Requirement of Ca2+ ion for the stimulating effect of cyclic 3',5'-AMP on muscle phosphorylase b kinase. J. Biochem. (Tokyo) 62, 285-286.
  • 213. Kakiuchi, S., Yamazaki, R. & Nakajima, H. (1970) Properties of a heat stable phospho- diesterase activating factor isolated from brain extract. Proc. Japan Acad. 46, 587­592.
  • 214. Cheung, W.Y. (1970) Cyclic 3',5'-nucleotide phosphodiesterase: Demonstration of an ac­tivator. Biochem. Biophys. Res. Commun. 38, 533-538.
  • 215. Nakayama, S. & Kretsinger, R.H. (1994) Evo­lution of the EF-band family of proteins. Annu. Rev. Biophys. Biomol. Struct. 23, 473 -507.
  • 216. Weinstein, H. & Mehler, E.L. (1994) Ca2+ binding and structural dynamics in the func­tions of calmodulin. Annu. Rev. Physiol. 56, 213-236.
  • 217. Loewenstein, W.R. (1989) From cell theory to cell connectivity: Experiments in cell-to- cell communication; in Membrane Transport. People and Ideas (Tosteson, D.C., ed.) Ameri­can Physiological Society, Bethesda.
  • 218. Costantin, L.L. (1975) Contractile activation in skeletal muscle. Progr. Biophys. Mol. Biol. 29, 197-224.
  • 219. Rios, E., Pizarro, G. & Stefani, E. (1992) Charge movement and the nature of signal transduction in skeletal muscle excitation- contraction coupling. Annu. Rev. Physiol. 54, 109-133.
  • 220. Catterall, W.A. (1995) Structure and func­tion of voltage-gated ion channels. Annu. Rev. Biochem. 64, 493-531.
  • 221. Shoshan-Barmatz, V. & Ashley, R.H. (1998) The structure, function and cellular regula­tion of ryanodine-sensitive Ca2+-release channels. Int. Rev. Cytol. 183, 185-270.
  • 222. Wagenknecht, T. & Radermacher, M. (1997) Ryanodine receptors: Structure and macro- molecular interactions. Curr. Opin. Struct. Biol. 7, 258-265.
  • 223. Sharma, M.R., Jeyakumar, L.H., Fleischer, S. & Wagenknecht, T. (2000) Three-dimen­sional structure of ryanodine receptor iso­form three in two conformational states as visualized by cryo-electron microscopy. J. Biol. Chem. 275, 9485-9491.
  • 224. Wier, W.G. (1992) [Ca2+]: Transients during excitation-contraction coupling of mamma­lian heart; in The Heart and the Cardiovascu­lar System (Fozzard, H.A. et al., eds.) 2nd edn., vol. 2, pp. 1223-1248, Raven Press Ltd, New York.
  • 225. Hauschka, S.D. (1994) The embryonic origin of muscle; in Myology (Engel, A.G. & Fran­zini-Armstrong, C., eds.) 2nd edn., vol. 1, pp. 3-73, McGraw-Hill, Inc., New York.
  • 226. Stockdale, F.E. (1997) Mechanisms of forma­tion of muscle fiber types. Cell Struct. Funct. 22, 37-43.
  • 227. Schiaffino, S. & Reggiani, C. (1996) Molecu­lar diversity of myofibrillar proteins: Gene regulation and functional significance. Physiol. Rev. 76, 371-423.
  • 228. Williams, R.S. & Neufer, P.D. (1996) Regula­tion of gene expression in skeletal muscle by contractile activity; in The Handbook of Phys­iology: Integration of Motor, Circulatory, Re­spiratory and Metabolic Control During Exer­cise (Rowell, L.B. & Shepard, J.T., eds.) pp. 1124-1150, American Physiological Society, Bethesda.
  • 229. Pette, D. & Staron, R.S. (1997) Mammalian skeletal muscle fiber type transitions. Int. Rev. Cytol. 170, 143-223.
  • 230. Pette, D., Peuker, H. & Staron, R.S. (1999) The impact of biochemical methods for sin­gle muscle fibre analysis. Acta Physiol. Scand. 166, 261-277.
  • 231. Wu, H., Naya, F.J., McKinsey, T.A., Mercer, B., Shelton, J.M., Chiu, E.R., Simard, A.R., Michel, R.N., Bassel-Duby, R., Olson, E.N. & Sanders Williams, R. (2000) MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J. 19, 1963-1973.
  • 232. Cruzalegui, F.M. & Bading, H. (2000) Cal­cium regulated protein kinase cascades and their transcription factor targets. Cell. Mol. Life Sci. 57, 402-410.
  • 233. Santella, L. & Bolsover, S. (1999) Calcium in the nucleus; in Calcium as a Cellular Regula­tor (Carafoli, E. & Klee, C., eds.) pp. 487-511, Oxford University Press, New York.
  • 234. Siekewitz, P. (1991) Citations and the tenor of the times. FASEB J. 5, 139.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-59090fcb-76c9-4003-ab27-058f75726aef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.