EN
Why do some animals weigh a fraction of a milligram and others many tons? Why do some animals mature after a few days and others need several years? Why do some animals grow and then reproduce without growing, while others continue growing after maturation? Why are growth curves so often well-approximated by von Bertalanffy’s equation? Why do some animals produce myriads of tiny eggs and others produce only a few large offspring? Evolution of life histories is driven basically by the size-dependences of three parameters: the resource acquisition rate, metabolic rate and mortality risk. The combinations of size-dependences of this trio produce a plethora of locally optimal life histories, and even more sub-optimal strategies which must coexist with optimal ones in the real world. Additionally, selection forces differ depending on whether a population stays most of the time at equilibrium or in an expansion phase. Life history evolution cannot be understood without mathematical modelling, and optimization of life-time resource allocation is a powerful approach to that, though not the only one. Modelling outcomes from studies based on resource allocation optimization are presented here mainly as graphs.