PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 49 | 4 |

Tytuł artykułu

Chromosomal localization of a novel repetitive sequence in the Chenopodium quinoa genome

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this study, a novel repetitive sequence pTaq10 was isolated from the Taq I digest of the genomic DNA of the pseudocereal Chenopodium quinoa. Sequence analysis indicated that this 286-bp monomer is not homologous to any known retroelement sequence. FISH and Southern blot analysis showed that this sequence is characterized by an interspersed genomic organization. After FISH, hybridization signals were observed as small dots spread throughout all of the chromosomes. pTaq hybridization signals were excluded from 45S rRNA gene loci, but they partly overlapped with 5S rDNA loci. pTaq10 is not a species-specific sequence, as it was also detected in C. berlandieri.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

49

Numer

4

Opis fizyczny

p.313-320,fig.,ref.

Twórcy

autor
  • Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
  • Institute of Biotechnology and Antibiotics, Warsaw, Poland
  • Department of Genetics, University of Silesia, Katowice, Poland
  • Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland

Bibliografia

  • Ananiev EV, Voles MI, Phillips RL, Rines HW, 2002. Isolation of A/D and C genome-specific dispersed and clustered repetitive DNA sequences from Avena sativa. Genome 45: 431—441.
  • Bennetzen JL, 1998. The structure and evolution of angiosperm nuclear genomes. Curr Opin Plant Biol 1 : 103-108.
  • Brandes A, Heslop-Harrison JS, Kamm A, Kubis S, Doudrick RL, Schmidt T, 1997. Comparative analysis of the chromosomal and genomic organization of Tyl-copia-Wke retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol Biol 33: 11-21.
  • Dechyeva D, Gindullis F, Schmidt T, 2003. Divergence of satellite DNA and interspersion of dispersed repeats in the genome of the wild beet Beta procumbens. Chromosome Res 11: 3-21.
  • Do GS, Seo BB, Yamamoto M, Suzuki G, Mukai Y, 2001. Identification and chromosomal location of tandemly repeated DNA sequences in Allium cepa. Genes Genet Syst 76: 53-60.
  • Doyle JJ, Doyle JL, 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: 11-15.
  • Fransz PF, Alonso-Blanco C, Liharska TB, Peeters AJM, Zabel P, de Jong JH, 1996. High resolution physical mapping in Arabidopsis thaliana and tomato by fluorescent in situ hybridization to extended DNA fibers. Plant J 9: 421-430.
  • Frediani M, Gelati MT, Maggini F, Galasso I, Minelli S, Ceccarelli M, Cionini PG, 1999. A family of dispersed repeats in the genome of the Viciafaba: structure, chromosomal organization, redundancy modulation, and evolution. Chromosoma 108: 317-324.
  • Galasso I, Blanco A, Katsiotis A, Pignone D, Heslop-Harrison JS, 1997. Genomic organization and phylogenetic relationships in the genus Dasypyrum analysed by Southern and in situ hybridization of total genomic and cloned DNA probes. Chromosoma 106: 53-61.
  • Gerlach WL, Dyer TA, 1980. Sequence organization of the repeating units in the nucleus of wheat, which contain 5S rRNA genes. Nucl Acids Res 11: 4851-4865.
  • Hanson RE, Zhao X-P, Islam-Faridi MN, Paterson AH, Zwick MS, Crane CF, et al. 1998. Evolution of interspersed repetitive elements in Gossypium (Malvaceae). Am J Bot 85: 1364-1368.
  • Hasterok R, Jenkins G, Langdon T, Jones RN, Maluszynska J, 2001. Ribosomal DNA is an effective marker of Brassica chromosomes. Theor Appl Genet 103: 486-490.
  • Kolano B, Gomez Pando L, Maluszynska J, 2001. Molecular cytogenetic studies in Chenopodium quinoa and Amaranthus caudatus. Acta Soc Bot Pol 70: 85-90.
  • Kubis S, Schmidt T, Heslop-Harrison JS, 1998. Repetitive DNA elements as a major component of plant genomes. Ann Bot 82: 45-55.
  • Kumar A, Bennetzen JL, 1999. Plant retrotransposons. Annu Rev Genet 33: 479-532.
  • Maughan PJ, Bonifacio A, Jellen EN, Stevens MR, Coleman CE, Ricks M, et al. 2004. A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theor Appl Genet 109: 1188-1195.
  • Maughan PJ, Kolano BA, Maluszynska J, Coles ND, Bonifacio, ARojas J, et al. 2006. Molecular and cytological characterization of ribosomal RNA genes in Chenopodium quinoa and Chenopodium berlandieri. Genome 49: 825-839.
  • Neumann P, Nouzona M, Macas J, 2001. Molecular and cytogenetic analysis of repetitive DNA in pea (Pisum sativum L.). Genome 4: 716-728.
  • Popenoe H, King SR, Leon J, Kalinowski LS, 1989. Lost crops of the Incas. In: Vietmeyer ND, ed. Little-known plants of the Andes with promise for worldwide cultivation. Washington: National Academy Press: 139-161.
  • Ruas PM, Bonifacio A, Ruas CF, Fairbanks DJ, Andersen WR, 1999. Genetic relationship among 19 accessions ofsix species of Chenopodium L., by Random Amplified Polymorphic DNA fragments (RAPD). Euphytica 105: 25-32.
  • Schmidt T, Heslop-Harrison JS, 1996. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens. Plant Mol Biol 30: 1099-1114.
  • Schmidt T, Kubis S, Heslop-Harrison JS, 1995. Analysis and chromosomal localization of retro- transposons in sugar beet (Beta vulgaris L.): LINEs and Tyl-copia-like elements as major components of the genome. Chromosome Res 3: 335-345.
  • Schmidt T, Kubis S, Katsiotis A, Jung C, Heslop-Harrison JS, 1998. Molecular and chromosomal organization of two repetitive DNA sequences with intercalary locations in sugar beet and other Beta species. Theor Appl Genet 97:696-704.
  • Schwarzacher T, Heslop-Harrison P, 2000. Practical in situ hybridization. Oxford: BIOS Scientific Publishers LTD.
  • Shahmuradov IA, Akbarova YY, Solovyev VV, Aliyev JA, 2003. Abundance of plastid DNA insertions in nuclear genomes of rice and Arabidopsis. Plant Mol Biol 52: 923-934.
  • Sharma S, Raina SN, 2005. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genome Res 109:15-26.
  • Unfriend I, Gruendler P, 1990. Nucleotide sequence of the 5.8S and 25S rRNA genes and the internal transcribed spacers from Arabidopsis thaliana. Nucl Acids Re 18: 4011.
  • Vitte C, Panaud O, 2005. LTR retrotransposons and flowering plant genome size: emergency of the increase/decrease model. Cytogenet Genome Res 110: 91-107.
  • Ward SM, 2000. Allotetraploid segregation for single-gene morphological characters in quinoa (Chenopodium quinoa Willd.). Euphytica 116: 11-16.
  • Weiss-Schneeweiss H, Stuessy TF, Siljak-Yakovlev S, Baeza CM, Parker J, 2003. Karyotype evolution in South American species of Hypochaeris (Asteraceae, Lactuceae). Plant Syst Evol 241: 171-184.
  • Wilson HD, 1990. Quinua and relatives (Chenopodium sect. Chenopodium subsect. Cellulata. Econ Bot 44: 92-110.
  • Yager LN, Kaumeyer JF, Lee I, Weinberg ES, 1987. Insertion of an intermediate repetitive sequence into a sea urchin histone-gene spacer. 24:346-356.
  • Zhang P, Friebe B, Gill BS, 2002. Variation in the distribution of genome specific DNA sequence on chromosomes reveals evolutionary relationships in the Triticum and Aegilops complex. Plant Syst Evol 235: 169-179.
  • Zhao X, Si Y, Hanson RE, Crane CF, Price JH, Stelly DM, et al. 1998. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton. Genome Res 8: 479-492.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-584bcd34-a268-4cf7-b4fd-f9acaa855ba9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.