PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 12 | 4 |

Tytuł artykułu

Molecular cloning and analysis of the human PCAN1 [GDEP] promoter

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Human PCAN1 (prostate cancer gene 1) is a prostate-specific gene that is highly expressed in prostate epithelial tissue, and frequently mutated in prostate tumors. To better understand the regulation of the PCAN1 gene, a 2.6-kb fragment of its 5′ flanking region was obtained by PCR. Its promoter activity was examined via the dual-luciferase reporter assay after it had been cloned into a pGL3-basic vector generating pGL3-p2.6kb and transfected into LNCaP cells. pGL3-basic and pGL3-control were respectively used as the negative and positive controls. Sequence analysis with the MatInspector database showed that some possible binding sites for the transcriptional factors, NKX3.1, P53, SP1, cEBP and the PPAR/RXR heterodimers may locate on a 2.6-kb region upstream of the PCAN1 gene. To examine the relevant regulation of PCAN1, pGL3-p2.6kb was transfected into the prostate cancer cell line LNCaP, which was treated with R1881 (10−7∼10−9 mol/l), 17β-estradiol (17β-E2, 10−7∼10−9 mol/l), all-trans-retinoic acid (all-trans-RA, 10−5∼10−7 mol/l) or 9-cis-retinoic acid (9-cis-RA, 10−5∼10−7 mol/l), and eukaryotic expression plasmids of NKX3.1, p53, Sp1, Pten, PPARγ or cEBPα were cotransfected with pGL3-p2.6kb into LNCaP cells. pRL-TK, a Renilla luciferase reporter vector, was cotransfected into all the transfection lines as an internal control. The activities of pGL3-p2.6kb (PCAN1 promoter) were analyzed via the dual-luciferase reporter assay 48 h after transfection. The results showed that 9-cis-RA enhanced the PCAN1 promoter activity in a dose-dependent manner, while R1881, 17β-E2 and all-trans-RA had no significant effect on PCAN1 promoter activities. Cotransfection with pGL3-p2.6kb and the expression plasmids of NKX3.1, p53, Sp1 or Pten respectively resulted in 1.66-, 2.48-, 2.00-and 1.72-fold 2.6 kb PCAN1 promoter activity increases relative to the controls, which were cotransfected with pcDNA3.1(+), while cotransfection of PPARγ and cEBPα yielded no significant effect on PCAN1 promoter activities. These results could be applied for further study of the function and transcription regulation of the PCAN1 gene in prostate development and carcinogenesis.

Wydawca

-

Rocznik

Tom

12

Numer

4

Opis fizyczny

p.482-492,fig.,ref.

Twórcy

autor
  • Shandong University, Jinan 250012, China
autor
autor
autor
autor
autor
autor
autor

Bibliografia

  • 1. Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., Smigal, C. and Thun, M.J. Cancer statistics 2006. CA Cancer J. Clin. 56 (2006) 106-130.
  • 2. Saad, F., Al Dejmah, A., Perrotte, P., McCormack, M., Benard, F., Valiquette, L. and Karakiewicz, P.I. Therapeutic approach to hormonerefractory prostate cancer. Can. J. Urol. 13 (2006) 52-56.
  • 3. Di Lorenzo, G. and De Placido,S. Hormone refractory prostate cancer (HRPC): present and future approaches of therapy. Int. J. Immunopathol. Pharmacol. 19 (2006) 11-34.
  • 4. Cross, D., Reding, D.J., Salzman, S.A., Zhang, K.Q., Catalona, W.J., Burke, J. and Burmester, J.K. Expression and initial promoter characterization of PCAN1 in retinal tissue and prostate cell lines. Med. Oncol. 21 (2004) 145- 153.
  • 5. Reding, D.J., Zhang, K.Q., Salzman, S.A., Thomalla, J.V., Riepe, R.E., Suarez, B.K., Catalona, W.J. and Burmester, J.K. Identification of a gene frequently mutated in prostate tumors. Med. Oncol. 18 (2001) 179-187.
  • 6. Olsson, P., Bera, T.K., Essand, M., Kumar, V., Duray, P., Vincent, J., Lee, B. and Pastan, I. GDEP, a new gene differentially expressed in normal prostate and prostate cancer. Prostate 48 (2001) 231-241.
  • 7. Vasmatzis, G., Essand, M., Brinkmann, U., Lee, B. and Pastan, I. Discovery of three genes specifically expressed in human prostate by expressed sequence tag database analysis. Proc. Natl. Acad. Sci. USA 95 (1998) 300-304.
  • 8. Dehm, S.M. and Tindall, D.J. Molecular regulation of androgen action in prostate cancer. J. Cell Biochem. 3 (2006) [Epub ahead of print].
  • 9. Coutinho-Camillo, C.M., Salaorni, S., Sarkis, A.S. and Nagai, M.A. Differentially expressed genes in the prostate cancer cell line LNCaP after exposure to androgen and anti-androgen. Cancer Genet. Cytogenet. 166 (2006) 130-138.
  • 10. Blutt, S.E., Allegretto, E.A., Pike, J.W. and Weigel, N.L. 1, 25-dihydroxyvitamin D3 and 9-cis-retinoic acid act synergistically to inhibit the growth of LNCaP prostate cells and cause accumulation of cells in G1. Endocrinology 138 (1997) 1491-1497.
  • 11. Rubin, M., Fenig, E., Rosenauer, A., Menendez-Botet, C., Achkar, C., Bentel, J.M., Yahalom, J., Mendelsohn, J. and Miller, W.H. Jr. 9-Cis retinoic acid inhibits growth of breast cancer cells and down-regulates estrogen receptor RNA and protein. Cancer Res. 54 (1994) 6549-6556.
  • 12. Gottardis, M.M., Lamph, W.W., Shalinsky, D.R., Wellstein, A. and Heyman, R.A. The efficacy of 9-cis retinoic acid in experimental models of cancer. Breast Cancer Res. Treat. 38 (1996) 85-96.
  • 13. Guzey, M., Demirpence, E., Criss, W. and DeLuca, H.F. Effects of retinoic acid (all-trans and 9-cis) on tumor progression in small-cell lung carcinoma. Biochem. Biophys. Res. Commun. 242 (1998) 369-375.
  • 14. Giannini, F., Maestro, R., Vukosavljevic, T., Pomponi, F. and Boiocchi, M. All-trans, 13-cis and 9-cis retinoic acids induce a fully reversible growth inhibition in HNSCC cell lines: implications for in vivo retinoic acid use. Int. J. Cancer 70 (1997) 194-200.
  • 15. Blutt, S.E., Allegretto, E.A., Pike, J.W. and Weigel, N.L. 1, 25-dihydroxyvitamin D3 and 9-cis-retinoic acid act synergistically to inhibit the growth of LNCaP prostate cells and cause accumulation of cells in G1. Endocrinology 138 (1997) 1491-1497.
  • 16. Kim, M.J., Bhatia-Gaur, R., Banach-Petrosky, W.A., Desai, N., Wang, Y., Hayward, S.W., Cunha, G.R., Cardiff ,R.D., Shen, M.M. and Abate-Shen, C. Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Res. 62 (2002) 2999-3004.
  • 17. Bowen, C., Bubendorf, L., Voeller, H.J., Slack, R., Willi, N., Sauter, G., Gasser, C., Koivisto, P., Lack, E.E., Kononen, J., Kallioniemi, O.P. and Gelmann, E.P. Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res. 60 (2000) 6111-6115.
  • 18. Abate-Shen, C., Banach-Petrosky, W.A., Sun, X., Economides, K.D., Desai, N., Gregg, J.P., Borowsky, A.D., Cardiff, R.D. and Shen, M.M. Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Res. 63 (2003) 3886-3890.
  • 19. Cronauer, M.V., Schulz, W.A., Burchardt, T., Ackermann, R. and Burchardt, M. Inhibition of p53 function diminishes androgen receptormediated signaling in prostate cancer cell lines. Oncogene 23 (2004) 3541- 3549.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-564e7914-2d99-4d11-a33a-5b487c3fb01b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.