PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 15 | 4 |

Tytuł artykułu

Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
As a consequence of industrial development, the environment is increasingly polluted with heavy met­als. Plants possess homeostatic mechanisms that allow them to keep correct concentrations of essential metal ions in cellular compartments and to minimize the damaging effects of an excess of nonessential ones. One of their adverse effects on plants is the generation of harmful active oxygen species, leading to oxidative stress. Besides the well-studied antioxidant systems consisting of low-molecular antioxidants and specific enzymes, recent works have begun to highlight the potential role of flavonoids, phenylopropanoids and phenolic acids as effective antioxidants. During heavy metal stress phenolic compounds can act as metal chelators and on the other hand phenolics can directly scavenge molecular species of active oxygen. Phenolics, especially flavonoids and phenylopropanoids, are oxidized by peroxidase, and act in H2O2- scavenging, phenolic/ASC/POX system. Their antioxidant action resides mainly in their chemical struc­ture. There is some evidence of induction of phenolic metabolism in plants as a response to multiple stresses (including heavy metal stress).

Wydawca

-

Rocznik

Tom

15

Numer

4

Opis fizyczny

p.523-530,fig.,ref.

Twórcy

autor
  • Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland

Bibliografia

  • 1. SEBASTIANI L., SCEBBA F., TONGETH R. Heavy metal ac­cumulation and growth responses in poplar clones Eridano (Pop- ulus deltoides x maximowiczii) and I-214 (P x euramericana) exposed to industrial waste. Env. Exp. Bot. 52, 79, 2004.
  • 2. RAMA DEVI S., PRASAD M.N.V. Copper toxicity in Ceratophyllum demeresum L. (Coontail), a free floating macrophyte: Response of antioxidant enzymes and antioxidants. Plant Sci. 138, 157, 1998.
  • 3. RAI V, VAYPAYEE P., SINGH S.N., MEHROTRA S. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defence system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci. 167, 1159, 2004.
  • 4. KHAN A.G., KUEK T.M., CHAUDHURY T.M., KHOO C.S., HAYES W.J. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41, 197, 2000.
  • 5. CLEMENS S. Molecular mechanisms of plant metal toler­ance and homeostasis. Planta 212, 475, 2001.
  • 6. ZENK M.H. Heavy metal detoxification in higher plants-a review. Gene 179, 21, 1996.
  • 7. ZORNOZA P., VÁZQUEZ S., ESTEBAN E., FERNÁN­DEZ-PASCUAL M., CARPENA R. Cadmium-stress in nod­ulated white lupin: strategies to avoid toxicity. Plant Physiol. Biochem. 40, 1003, 2002.
  • 8. BARANOWSKA-MOREK A. Roślinne mechanizmy tol­erancji na toksyczne działanie metali ciężkich. Kosmos 52, 283, 2003.
  • 9. SIEDLECKA A., TUKENDORF A., SKÓRZAŃSKA- POLIT E., MAKSYMIEC W., WÓJCIK M., BASZYŃSKI T., KRUPA Z. Angiosperms. [in] Metals in the environ­ment. Analysis of biodiveristy. Prasad M.NV (red) Mar­cel Dekker, Inc. New York, Hyderbad India, pp 171-217, 2001
  • 10. JUNG CH., MAEDER V., FUNK F., FREY B., STICHER H., FROSSERD E. Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxi­fication. Plant Soil 252, 301, 2003.
  • 11. MITHOFER A., SCHULZE B., BOLAND W. Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett. 566, 1, 2004.
  • 12. DIÁZ J., BERNAL A., POMAR F., MERINO F. Induction of shikimate dehydrogenase and peroxidase in pepper (Cap­sicum annum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci. 161, 179, 2001.
  • 13. WOJTASZEK P. Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322, 681, 1997.
  • 14. INZÉ D., VAN MONTAGU M. Oxidative stress in plants. Curr. Opin. Biotech. 6, 153, 1995.
  • 15. MITTOVA V., VOLOKITA M., GUY M., TAL M. Activities of SOD and the ascorbate-glutathione cycle enzymes in sub- cellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol. Plant. 110, 45, 2000.
  • 16. DIETZ, K.J., BAIER, M., KRAMER, U. Free radicals and active oxygen species as mediators of heavy metal toxicity in plants. In: Prasad M.N.V., Hagemeyer J. (Eds.), Heavy Metal Stress in Plants. From Molecule to Ecosystems. Springer, Berlin, pp 73-97, 1999.
  • 17. SAHW B.P., SAHU S.K., MISHRA R.K. Heavy metal in­duced oxidative damage in terrestrial plants. In: Presad, M.N.V. (Ed.), Heavy Metal Stress in Plants: From Bio- molecules to Ecosystems, second ed. Springer, Berlin, pp 84-126, 2004.
  • 18. SAKIHAMA Y., YAMASAKI H. Lipid peroxidation induc­es by phenolics in cinjunction with aluminium ions. Biol. Plantarum 45, 249, 2002.
  • 19. YAMASAKI H., SAKIHAMA Y., IKEHARA N. Flavonoid- peroxidase reaction as a detoxification mechanism of plant cell against H2O2. Plant Physiol. 115, 1405, 1997.
  • 20. SMEETS K., C UYPERS A., LAMBRECHTS A., SEMANE B., HOET P., VAN LAERE A., VANGRONSVELD J. In­duction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol. Biochem . 43, 437, 2005.
  • 21. SGHERRI C., COSI E., NAVARI-IZZO F. Phenols and an- tioxidative status of Raphanus sativus grown in copper ex­cess. Physiol. Plant. 118, 21, 2003.
  • 22. TAUSZ M., WONISCH A., GRILL D., MORALES D., JI­MENEZ M.S. Measuring antioxidants in tree species in the natural environment: from sampling to data evaluationm. J. Exp. Bot. 54, 1505, 2003.
  • 23. CHAUDIERE J., FERRARI-ILIOU R. Intracellular anti­oxidants: from chemical to biochemical mechanisms. Food Chem. Tox. 37, 949, 1999.
  • 24. KNORZER O.C., DURNER J., BOGER P. Alterations in the antioxidative system of suspension-cultures soybean cells (Glycine max) induced by oxidative stress. Physiol. Plant. 97, 388, 1996.
  • 25. RUCIŃSKA R., WAPLAK S., GWÓŹDŹ E. Free radical formation and activity of antioxidant enzymes in lupin roots exposed to lead. Plant Physiol. Biochem. 37, 187, 1999.
  • 26. NOCTOR G., GOMEZ L., VANACKER H., FOYER C.H. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and sig­naling. J. Exp. Bot. 53, 1283, 2002.
  • 27. MORABITO D., GUERRIER G. The free oxygen radical scavenging enzymes and redox status in roots and leaves of Populus x euramericana in response to osmotic stress, des­iccation and rehydration. J. Plant Physiol. 157, 74, 2000.
  • 28. SMIRNOFF N. Ascorbic acid: metabolism and functions of multi-facetted molecule. Curr. Opin. Plant Biol. 3, 229, 2000.
  • 29. RYAN D., ROBARDS K., PRENZIER P., ANTOLOVICH M. Applications of mass spectrometry to plant phenols. Trends Anal. Chem. 18, 362, 1999.
  • 30. DIXON R., PAIVA N.L. Stress-induced phenylopropanoid metabolism. Plant Cell 7, 1085, 1995.
  • 31. RICE-EVANS C.A., MILLER N.J., PAGANGA G. Antioxi- dant properties of phenolic compounds. Trends Plant Sci. 2, 152, 1997.
  • 32. SOLECKA D. Role of phenylpropanoid compounds in plant responses to different stress factors, Acta Physiol. Plant 19, 257, 1997.
  • 33. HARBORNE, J.B. Biochemistry of phenolic compounds. Academic, London. pp 511-543, 1964.
  • 34. TAKAHAMA U., ONIKI T. Flavonoid and some other phe­nolics as substrates of peroxidase: physiological significance of the redox reactions. J. Plant Res. 113, 301, 2000.
  • 35. GRACE S.C., LOGAN B.A. Energy dissipation and radical scavenging by the plant phenylopropanoid pathway. Phil. Trans. R. Soc. Lond. 355, 1499, 2000.
  • 36. LAVOLA A., JULKUNEN-TIITTO R., DE LA ROSA T.M., LEHTO T., APHALO P.J. Allocation of carbon to growth and secondary metabolites in birch seedlings under UV-B radiation and CO2 exposure. Physiol. Plant. 109, 260, 2000.
  • 37. RUIZ J.M., RIVERO R.M., LOPEZ-CANTARERO I., ROMERO L. Role of Ca2+ in metabolism of phenolic com­pounds in tabacco leaves (Nicotiana tabacum L.). Plant Growth Reg. 41, 173, 2003.
  • 38. KONDO N., KAWASHIMA M. Enhancement of tolerance to oxidative stress in cucumber (Cucumis sativus L.) seedlings by UV-B irradiation: possible involvement of phenolic compounds and antioxidant enzymes. J. Plant Res. 113, 311, 2000.
  • 39. WINKEL-SHIRLEY B. Biosynthesis of flavonoids and ef­fects of stress. Curr. Opin. Plant Biol. 5, 218, 2002.
  • 40. PARRY A.D., TILLER S.A., EDWARDS R. The Effects of Heavy Metals and Root Immersion on Isoflavonoid Metabo­lism in Alfalfa (Medicago sativa L.) Plant Physiol. 106, 195, 1994.
  • 41. BORS W., HELLER W., MICHEL C., SARAN M. Flavo­noids as antioxidants: determination of radical-scavenging efficiency. Meth. Enzymol. 186, 343, 1990.
  • 42. ARORA A., NAIR M.G., STRASBURG G.M. Structure-ac­tivity relationships for antioxidant activities of a series of plavonoids in a liposomal system. Free Radic. Biol. Med. 24, 1355, 1998.
  • 43. RICE-EVANS C.A., MILLER N.J., PAGANGA G. Antioxi­dant properties of phenolic compounds. Trends Plant Sci. 2, 152, 1997.
  • 44. LAVID N., SCHWARTZ A., YARDEN O., TEL-OR E. The involvement of polyphenols and peroxidase acitivities in heavy metal accumulation by epidermal glands of waterlily (Nymphaeceaea). Planta 212, 323, 2001.
  • 45. MORGAN J.F., KLUCAS R.V., GRAYER R.J., ABIAN J., BECANA M. Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radic. Biol. Med. 22, 861, 1997.
  • 46. MILLIC B.L., DJILAS S.M., CANADANOVIC-BRUNET J.M. Antioxidative activity of phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chem. 61, 443, 1998.
  • 47. ARORA A., BYREM T.M., NARI M.G., STRASBURG G.M. Modulation of liposomal membranes fluidity by flavonoids and isoflavonoids. Archives of Biochemistry and Biophysic 373, 102, 2000.
  • 48. BLOKHINA O., VIROLAINEN E., FAGERSTEDT K.V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91, 179, 2003.
  • 49. VERSTRAETEN S.V., KEEN C.L., SCHMITZ H.H., FRA­GA C.G., OTEIZA P.I. Flavan-3-ols and procyanidins pro­tect liposomes against lipid oxidation and disruption of the bilayer structure. Free Radic. Biol. Med. 34, 84, 2003.
  • 50. SAKIHAMA Y., MANO J., SANO S., ASADA K., YAMA- SAKI H. Reduction of phenoxyl radicals mediated by monodehydroascorbate reductase. Biochem. Biophys. Res. Comm. 279, 949, 2000.
  • 51. RICE-EVANS C.A., MILLER N.J., PAGANGA G. Struc- ture-antioxidant activity relationships of flavonoids and phe­nolic acids. Free Radic. Biol. Med. 20, 933, 1996.
  • 52. TAKAHAMA U. Oxidation of flavonols by hydrogen per­oxide in epidermal and guard cells of Vicia faba L. Plant Cell Physiol. 29, 433, 1988.
  • 53. TAKAHAMA U. Hydrogen peroxide dependant oxidation of flavonoids and hydroxycinnamic acids derivatives in epi­dermal guard cells of Tradescantia virginiana. Plant Cell Physiol. 29, 475, 1988.
  • 54. TAKAHAMA U., ONIKI T. A peroxidase/phenolics/ascor- bate system can scavenge hydrogen peroxide in plant cells. Physiol. Plant., 101, 845, 1997.
  • 55. SAKIHAMA Y., COHEN M.F., GRACE S.C., YAMASA- KI H. Plant phenolic antioxidant and prooxidant activities: phenolisc-induced oxidative damage mediated by metals in plants. Toxicology 177, 67, 2002.
  • 56. NOCTOR G., FOYER CH.H. Ascorbate and glutathion: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 249, 1998.
  • 57. HOREMANS N., FOYER C.H., POTTERS G., ASARD H., Ascorbate function and associated transport systems in plants. Plant Physiol. Biochem. 38, 531, 2000.
  • 58. YOSHIMURA K., YABUTA Y., ISHIKAWA T., SHIGEO- KA S. Expression of spinach ascorbate peroxidase isoen­zymes in response to oxidative stress. Plant Physiol. 123, 223, 2000.
  • 59. ASADA K. Ascorbate peroxidase a hydrogen-peroxide- scavenging enzyme in plants. Physiol. Plant.85, 235, 1992.
  • 60. PASSARDI F., PENEL C., DUNAND C. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci. 9, 2004.
  • 61. DE OBESO M., CAPARROS-RUIZ D., VIGNOLS F., PUIGDOMENECH P., RIGAU J. Characterisation of maize peroxidases having differential patterns of mRNA accumu­lation in relation to lignifying tissues. Gene 309, 23, 2003.
  • 62. DIAZ J., BERNAL A., POMAR F., MERINO F. Induction of shikimate dehydrogenase and peroxidase in pepper (Cap­sicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci. 161, 179, 2001.
  • 63. KILPELAINEN I., TEERI T.H., SIMOLA L.K. Lignifica­tion related enzymes in Picea abies suspension cultures. Physiol. Plant. 114, 343, 2002.
  • 64. RAUTENKRANZ A.A.F., LI L., MACHLER F., MARTI- NOIA E., OERTLI J.J. Transport of Ascorbic and Dehydro- ascorbic Acids across Protoplast and Vacuole Membranes Isolated from Barley (Hordeum vulgare 1. cv Gerbel) Leaves Plant Physiol. 106, 187, 1994.
  • 65. HOREMANS N., FOYER C.H., ASARD H. Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci. 5, 263, 2000.
  • 66. RIETJENS I.M., BOERSMA M.G., DE HAAN L., SPEN- KELINK B., AWAD H.M., CNUBBEN N.H.P., VAN ZAN- DEN J.J., VAN DER WOUDE H., ALINK G.M., KOEMAN J.H. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ. Tox. Pharm. 11, 321, 2002.
  • 67. YAMASAKI H., GRACE S.C. EPR detection of phyto- phenoxyl radicals stabilized by zinc ions: evidence for the redox coupling of plant phenolics with ascorbate in the H2O2-peroxide system. FEBS Lett. 422, 377, 1998.
  • 68. BARBEHENN R.V. POOPAT U. SPENCER B. Semiqui- none and ascorbyl radicals in the gut fluids of caterpillars measured with EPR spectrometry. Insect Biochem. Molec. Biol. 33, 125, 2003.
  • 69. TAKAHAMA U., HIRITSU M., ONIKI T. Age-dependent changes in levels of ascorbic acid and chlorogenic acid, and activities of peroxidase and superoxide dismutase in apoplast of tabacco leaves: mechanism of the oxidation of chlorogenic acid in the apoplast. Plant Cell Physiol. 40, 716, 1999.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-5400c91f-4922-4c6a-82fd-9edef2628165
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.