PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 15 | 5 |

Tytuł artykułu

The biolog plates technique as a tool in ecological studies of microbial communities

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Biolog technique was introduced into ecological studies to estimate metabolic potential of microbial com­munities. While utilizing carbon substrates (95 or 31x3, depending on the plate type), microbes reduce a colourless dye to violet formazan. The colour is measured spectrophotometrically. This is a rapid and quite convenient method but it has many drawbacks - for example, only microbes that are cultivable and able to grow in high-nutrient condi­tions contribute to substrate utilization. The method was used mainly to investigate microbial communities from bulk and rhizosphere soil and to estimate the impact of stressors on soil microbial communities.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

15

Numer

5

Opis fizyczny

p.669-676,fig.,ref.

Twórcy

  • Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland

Bibliografia

  • 1. AERTS R. Climate, leaf litter chemistry and leaf litter de­composition in terrestrial ecosystems: a triangular relation­ship. Oikos 79, 439, 1997.
  • 2. COUTEAUX M. M., BOTTNER P., BERG B. Litter decom­position, climate and litter quality. Tree 10 (2), 63, 1995.
  • 3. WARDLE D. A., NILSSON M. C., ZACKRISSON O., GA- LLET C. Determinants of litter mixing effects in a Swedish boreal forest. Soil. Biol. Biochem. 35, 827, 2000.
  • 4. PRESCOTT C. E. Influence of forest floor type on rates of litter decomposition in microcosms. Soil Biol. Biochem. 28, 1319, 1996.
  • 5. WITKAMP M., AUSMUS B. S. Processes in decomposi­tion and nutrient transport in forest systems. In: Ander­son J. M., Macfadyen A. (eds.) The role of terrestrial and aquatic organisms in decomposition processes. Blackwell Sci. Publ., Oxford, London, Edinburgh, Melbourne, 375­396, 1976.
  • 6. BOIVIN M. E., BREURE A. M., POSTHUMA L., RUT­GERS M. Determination of field effects of contaminants- significance of pollution-induced community tolerance. Hum. Ecol. Risk Assess. 8 (5), 1035, 2002.
  • 7. DICKENS H. E., ANDERSON J. M. Manipulation o soil microbial community structure in bog and forest soils us­ing chloroform fumigation. Soil Biol. Biochem. 31, 2049, 1999.
  • 8. ENAMI Y., OKANO S., YADA H., NAKAMURA Y. Influ­ence of earthworm activity and rice straw application on the soil microbial community structure analyzed by PLFA pat­tern. Eur. J. Soil Biol. 37, 269, 2001.
  • 9. PENNANEN T., PAAVOLAINEN L., HANTULA J. Rapid PCR-based method for the direct analysis of fungal com­munities in complex environmental samples. Soil Biol. Bio- chem. 33, 697, 2001.
  • 10. YRJÀLÀ K., KATAINEN R., JURGENS G., SAARELA U., SAANO A., ROMANTSCHUK M., FRITZE H. Wood ash fertilization alters the forest humus Archaea community. Soil Biol. Biochem. 36, 199, 2004.
  • 11. SMALLA K., WACHTENDORF U., HEUER H., LIU W.- T., FORNEY L. Analysis of Biolog GN substrate utilization patterns by microbial communities. Appl. Environ. Micro­biol. 64 (4), 1220, 1998.
  • 12. GARLAND J. L., MILLS A. L. Classification and character­ization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utiliza­tion. Appl. Environ. Microbiol. 57 (8), 2351, 1991.
  • 13. KELLY J.J., TATE R. L. Use of Biolog for the analysis of microbial communities from zinc-contaminated soils. J. En­viron. Qual. 27 (3), 600, 1998.
  • 14. BAUDOIN E., BENIZRI E., GUCKERT A. Metabolic fin­gerprint of microbial communities from distinct maize rhi- zosphere compartments. Eur. J. Soil Biol. 37, 85, 2001.
  • 15. GOMEZ E., GARLAND J., CONTI M. Reproducibility in the response of soil bacterial community-level physiological profiles from a land use intensification gradient. Appl. Soil Ecol. 26, 21, 2004.
  • 16. GRAYSTON S. J., CAMPBELL C. D., BARDGETT R. D., MAWDSLEY J. L., CLEGG C. D., RITZ K., GRIFFITHS B. S., RODWELL J. S., EDWARDS S. J., DAVIES W. J., ELSTON D. J., MILLARD P. Assessing shifts in microbial community structure across a range of grasslands of differ­ing management intensity using CLPP, PLFA and commu­nity DNA techniques. Appl. Soil Ecol. 25, 63, 2004.
  • 17. PRESTON-MAFHAM J., BODDY L., RANDERSON P. F. Analysis of microbial community functional diversity us­ing sole-carbon-source utilisation profiles -a critique. FEMS Microbiol. Ecol. 42, 1, 2002.
  • 18. O'CONNEL S. P., GARLAND J. L. Dissimilar response of microbial communities in Biolog GN and GN2 plates. Soil Biol. Biochem. 34, 413, 2002.
  • 19. CHOI K.-H., DOBBS F.C. Comparison of two kinds of Bio­log microplates (GN and Eco) in their ability to distinguish among aquatic microbial communities. J. Microbiol. Meth­ods 36, 203, 1999.
  • 20. CAMPBELL C. D, GRAYSTON S. J., HIRST D. J. Use of rhizosphere carbon sources in sole carbon source test to dis­criminate soil microbial communities. J. Microbiol. Meth­ods 30, 33, 1997.
  • 21. CLASSEN A. T., BOYLE S. I., HASKINS K. E., OVERBY S. T., HART S. C. Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils. FEMS Microbiol. Ecol. 44, 319, 2003.
  • 22. KUBICEK C. P., BISSET J., DRUZHININA I., KULLNIG- GRADINGER C., SZAKACS G. Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet. Biol. 38, 310, 2003.
  • 23. HAACK, S. K., GARCHOW H., KLUG M. J., FORNEY L. J. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source uti­lization patterns. Appl. Environ. Microbiol. 61, 1458, 1995.
  • 24. HITZL W., RANGGER A., SHARMA S., INSAM H. Separa­tion power of 95 substrates of the Biolog system determined in various soils. FEMS Microbiol. Ecol. 22, 167, 1997.
  • 25. HEUER H., SMALLA K. Evaluation of community-level catabolic profiling using Biolog GN microplates to study microbial community changes in potato phyllosphere. J. Mi­crobiol. Methods 30, 49, 1997.
  • 26. GARLAND J. L. Analytical approaches to the characteriza­tion of samples of microbial communities using patterns of potential C source utilization. Soil Biol. Biochem. 28 (2), 213, 1996.
  • 27. GARLAND J. L., MILLS A. L. A community-level physi­ological approach for studying microbial communities. (In: Ritz K., Dighton J.,Giller K. E. (eds.) Beyond the biomass. British Society of Soil Science (BSSS), A Wiley-Sayce Pub­lication, pp 77-83, 1994.
  • 28. VERSCHUERE L., FIEVEZ V., VAN VOOREN L., VERS- TRAETE W. The contribution of indyvidual populations to the Biolog pattern of model microbial communities. FEMS Microbiol. Ecol. 24, 353, 1997.
  • 29. LINDSTROM J. E., BARRY R. P., BRADDOCK J. F. Microbial community analysis: a kinetic approach to construct­ing potential C source utilization patterns. Soil Biol. Bio­chem. 30 (2), 231, 1998.
  • 30. MONDINI C., INSAM H. Community level physiological profiling as a tool to evaluate compost maturity: a kinetic approach. Eur. J. Soil Biol. 39, 141, 2003.
  • 31. GARLAND J. L. Analysis and interpretation of community­level physiological profiles in microbial ecology. FEMS Mi­crobiol. Ecol. 24, 289, 1997.
  • 32. GARLAND J., L., MILLS A. L., YOUNG J. S. Relative effec­tiveness of kinetic analysis vs single point readings for classify­ing environmental samples based on community-level physi­ological profiles (CLPP). Soil Biol. Biochem. 33, 1059, 2001.
  • 33. ZAK J. C., WILLIG M. R., MOORHEAD D. L., WILD- MAN H. G. Functional diversity of microbial communi­ties: A quantitative approach. Soil Biol. Biochem. 26, 1101, 1994.
  • 34. HARCH B. D., CORRELL R. L., MEECH W., KIRKBY C. A., PANKHURST C. E. Using the Gini coefficient with Bio­log substrate utilisation data to provide an alternative quanti­tative measure for comparing bacterial soil communities. J. Microbiol. Methods 30, 91, 1997.
  • 35. SHARMA S., RANNGER A., VON LUTZOW M., INSAM H. Functional diversity of soil bacterial communities in­creases after maize litter amendments. Eur. J. Soil Biol. 34 (2), 53, 1998.
  • 36. GARLAND J. L. Patterns of potential carbon source utiliza­tion by rhizosphere communities. Soil Biol. Biochem. 28, 223, 1996.
  • 37. KANDELER E., KAMPICHLER C., HORAK O. Influence of heavy metals on the functional diversity of soil microbial communities. Biol. Fertil. Soils 23 (3), 299, 1996.
  • 38. RUTGERS M., VAN'T VERLAAT I. M., WIND B., POST­HUMA L., BREURE A. M. Rapid method for assessing pol­lution-induced community tolerance in contaminated soil. Environ. Toxicol. Chem. 17 (11), 2210, 1998.
  • 39. DEGENS B. P. Catabolic response profiles differ between microorganisms grown in soils. Soil Biol. Biochem. 31, 475, 1999.
  • 40. WINDING A., HENDRIKSEN N. B. Biolog substrate utilisation assay for metabolic fingerprints of soil bacteria: incubation effects. In: Insam H., Rangger A. (eds.) Micro- bial communities (functional versus structural approaches). Springer-Verlag, Berlin, Heidelberg, New York, pp. 195­205, 1997.
  • 41. GLIMM E., HEUER H., ENGELEN B., SMALLA K., BACKHAUS H. Statistical comparisons of community cat­abolic profiles. J. Microbiol. Methods 30, 71, 1997.
  • 42. WINDING A., BINNERUP S. J., S0RENSEN J. Viabil­ity of indigenous soil bacteria assayed by respiratory ac­tivity and growth. Appl. Environ. Microbiol. 60, 2869, 1994.
  • 43. SCHUTTER M., DICK R. Shifts in substrate utilization potential and structure of soil microbial communities in re­sponse to carbon substrates. Soil Biol. Biochem. 33, 1481, 2001.
  • 44. KONOPKA A., OLIVER L., TURCO R. F., JR. The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microb. Ecol. 35, 103, 1998.
  • 45. CAMPBELL C. D., CHAPMAN S. J., CAMERON C. M., DAVIDSON M. S., POTTS J. M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593, 2003.
  • 46. LAWLEY T., BELL C. Kinetic analyses of Biolog com­munity profiles to detect changes in inoculum density and species diversity of river bacterial communities. Can. J. Microbiol. 44, 588, 1998.
  • 47. SODERBERG K. H., PROBANZA A., JUMPPONEN A., BAATH E. The microbial community in the rhizosphere de­termined by community-level physiological profiles (CLPP) and direct soil- and cfu-PLFA techniques. Appl. Soil Ecol. 25, 135, 2004.
  • 48. GRAYSTON S. J., WANG S., CAMPBELL C. D., ED­WARDS A. C. Selective influence of plant species on mi­crobial diversity in the rhizosphere. Soil Biol. Biochem. 30 (3), 369, 1998.
  • 49. BANERJEE M. R., BURTON D. L., DEPOE S. Impact of sewage sludge application on soil biological characteristics. Agriculture Ecosystem Environ. 66, 241, 1997.
  • 50. ELLIS R. J., NEISH B., TRETT M. W., BEST J. G., WEIGHTMAN A. J., MORGAN P., FRY J. C. Comparison of microbial and meiofaunal community analyses for deter­mining impact of heavy metal contamination. J. Microbiol. Methods 45, 171, 2001.
  • 51. BUNDY J. G., PATON G. I., CAMPBELL C. D. Combined microbial community level and single species biosensor re­sponses to monitor recovery of oil polluted soil. Soil Biol. Biochem. 36, 1149, 2004.
  • 52. PANKHURST C. E., YU S., HAWKE B. G., HARCH B. D. Capacity of fatty acid profiles and substrate utilization pat­terns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three loca­tions in South Australia. Biol. Fertil. Soils 33, 204, 2001.
  • 53. PIETIKAINEN J., HIUKKA R., FRITZE H. Does short- term heating of forest humus change its properties as a sub­strate for microbes? Soil Biol. Biochem. 32, 277, 2000.
  • 54. RUTGERS M., BREURE A. M. Risk assessment, microbial communities, and pollution-induced community tolerance. Human Ecol. Risk Assess. 5 (4), 661, 1999.
  • 55. DEGENS B. P., HARRIS J. A. Development of a physi­ological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol. Biochem. 29 (9/10), 1309, 1997.
  • 56. GARLAND J. L., ROBERTS M. S., LEVINE L. H., MILLS A. L. Community-level physiological profiling performed with an oxygen-sensitive fluorophore in a microtiter plate. Appl. Environ. Microbiol. 69 (5), 2994, 2003.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-537ae961-841e-4802-bcb6-9c6f26900250
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.