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A growing body of data indicates that H. pylori colonization of human is ancient, 
which is consistent with its high prevalence, chronicity of carriage, and generally 
low level of disease, which, when it occurs has only marginal or no effects on 
host reproductive capacity. All of these phenomena are markers for a relatively 
benign co-existence, which may include all of the entire spectrum of interactions 
from parasitism, through commensalism, to symbiosis. Recent studies suggest the 
emergence of “quasispecies” during prolonged colonization, and the presence of 
multiple strains colonizing individual hosts. Such observations suggest that concepts 
of competition between strains and mutualism will be important in understanding 
the ecology of colonization and its effects on hosts. The presence of particular 
pathologies in the host may in part be a function of the characteristics of the 
bacterial population present. At a genomic level, H. pylori appears to adapt to 
changing conditions by point mutation, genomic rearrangement, and horizontal 
gene transfer; the latter is favored by its natural competence. The ability of H. 
pylori to alter phenotypic properties including superficial Lewis antigen expression 
and secretion of proinflammatory molecules is evidence of its sensitivity to 
environmental signals from the host. In such a universe, disease outcomes such 
as ulceration or neoplasia may be considered as accidents secondary to microbial 
persistence. 
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INTRODUCTION 

In attempting to understand why and how Helicobacter pylori causes 
disease, we must consider several facets of its biology. In the 15 years since the 
discovery of H. pylori, much has been learned about its epidemiology and 
relationship to clinical disease, but to move to a deeper understanding, several 
fundamental questions must be addressed (Table 1). 
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Table 1. Critical biological features of H. pylori 

  

  

Criterion H. pylori characteristic 

Longevity in primates ancient 

Colonization of individual host persistent 

Population structure diverse 

Generation of variation on-going       
  

Historical association of H. pylori and the human stomach 

First, we must understand the longevity of its relationship with humans. 

A wide and consistent body of evidence indicates that H. pylori is an ancient 

inhabitant of the human stomach (1). This evidence may be summarized as 

follows. Stomachs are highly conserved in vertebrate evolution (more than 

300 milion years), and Helicobacter-like organisms are found in stomachs 

across a broad phylogenetic distribution. H. pylori are found nearly universally 

in the stomachs of non-human primates, and among humans living under 

the conditions extant for most of human history. H. pylori are highly diverse 

at the genetic level and cause a low level of disease in relation to their 

prevalence. Such analyses indicate that to study the human stomach, we 

must understant H. pylori, since it has been part of us for a very long 

time. Similarly, co-evolution of H. pylori and the human stomach implies 

that to know the organism, we must have a detailed understanding of 

gastric physiology. 

Persistence in the gastric milieu 

Once H. pylori colonization is established in a human host, the 

organisms persist for decades, if not for the host’s entire lifetime. This 

phenomenon must be regarded as one of the cardinal biological features 

of H. pylori, and distinguishes it from many intestinal pathogens 

important in human medicine. From a biological standpoint, the need to 

persist has forced the evolution of the organism into particular directions. 

For example, parasites that induce highly inflammatory responses either 

are quickly eliminated or kill their host. Infection with Streptococcus 

pneumoniae is an example of such an organism. Organisms that are 

persistent often find ways to minimize inflammation, such as by 

mimicking host antigenic structures. The expression of Lewis antigens by 

Schistosoma species: is an example of this phenomenon (2). The recent 

description of H. pylori strains possessing Lewis antigens as part of the
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polysaccharide chains of their endotoxin molecules (3—6), a superficial 

portion of the bacterial cell, is consistent with the latter type of 

pathogen. 
Similarly, persistence in the stomach requires mechanisms for dealing with 

low pH. Interestingly, H. pylori has the means for raising the local pH, by 

producing urease, for example, resulting in enhanced ammonia production 

(7, 8), with neutralization of gastric acidity. In contrast, it has the means to 

lower its environmental pH, by producing N-a methylhistamine, which is 

a gastric secretogogue (9). 
The ability of H. pylori to induce inflammation (10—12), but to possess 

a lipopolysaccharide (LPS) with low endotoxic activity (13—15) and cloaked 

with Lewis antigenic determinants, appears paradoxical. Similarly, the ability 

to both raise and lower gastric pH seems hardly necessary. Yet these 

apparent contradictions point to a greater truth. One hypothesis is that 

in order to persist in the gastric milieu, H. pylori must tightly regulate 

its interactions with the environment. Such regulation may involve expression 

of bacterial phenotypes, and/or host characteristics. In mathematical analyses, 

an unregulated model was not able to achieve steady-state (persistence) 

(17). H..pylori may be thought to be persisting through a finely-tuned, 

and probably well-balanced interaction with its host. 

Diversity of H. pylori 

From studies of restriction endonuclease digestion and _ restriction 

fragment length polymorphism, among other techniques, it became clear 

that H. pylori strains were highly diverse at the genetic level (18—21). 
Recent work by Go and colleagues, using multilocus enzyme electrophoresis 

confirmed these observations, and indicated that H. pylori were more diverse 

than any of the 11 other bacterial pathogens studied (22). The phenomena 

that contribute to its diversity are summarized in Table 2. These may 
be summarized by noting that at the level of the individual gene, there 
is extensive variability based on point mutations, that are predominantly 
non-coding (23), and on mosaic gene structures (24), that suggest 
recombination among strains. A large chromosomal segment (pathogenicity 

islands) is present in a subset of strains (25—27); examination of G+C 
content indicates that it entered the genome after the bulk of the 

chromosome was defined. H. pylori may have mobile DNA, including 
insertion sequences (25, 26) and plasmids (28—30). Although for certain 
Organisms, such as E. colli, for example, gene order on the chromosome 
is relatively fixed from strain to strain, for H. pylori the order is highly 
variable (31).



310 

Table 2. Types of diversity in H. pylori 

  

  

Type Example 

Point mutations иге С (23) 
Mosaicism vac A (24) 
Non-conserved elements cag island (25—27) 
Mobile DNA 15605 (25, 26) 
genome order map rearrangement (31)         

Generation of variation 

An important, and ultimately clinically relevant, question is whether the 
enormous variation merely reflects an ancient lineage, or whether it continues 
to occur. Studies of a series of H. pylori isolates from a Dutch family provides 
evidence that there is ongoing change (32). Recent work by Kuipers et al., 
examining paired isolates obtained 7 to 10 years apart from the same host 
suggests the formation of “quasispecies”, presumably due to point mutations 
(33). If this model is correct, then an individual host is colonized by a “cloud” 
of closely related organisms. Such biology might reflect a strategy to maximize 
fitness by maintaining a diverse population in case of environmental changes in 
a given host. Such a strategy also might maximize transmission to and 
colonization of a new host. 

H. pylori are naturally competent (34, 35), that is able to take up 
and be transformed by free DNA. This ability to be transformed, first 
observed in pneumococci, suggests that H. pylori can recombine with one 
another in vivo. Mosaic structures of genes are consistent with recombination, 
and a population structure analysis provided further evidence for this 
phenomenon (36). 

Thus, the ability to change genotype by H. pylori appears to be on-going 
and is summarized in Table 3. Such changes provide models to understand the 
population biology of these organisms, and such phenomena as the emergence 
of antibiotic resistance (37). 

Table 3. Genetic variation in H. pylori 

  

  

Type of 
Mechanism Consequence genetic 

variation 

Point mutation > quasispecies formation Drift 
Recombination — chimera formation Shift        
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Exclusive niches for H. pylori variants? 

Individuals may be colonized by more than one H. pylori strain (19, 

38—41) a phenomenon that can be easily distinguished by virtually all 

genotyping methods, in contrast to “quasispecies”. The minimum estimate for 

this phenomenon is 15% of all hosts, but since biopsies sample a minute 

proportion (107°) of the gastric mucosa, and usually only single colonies are 

isolated, this is probably a substantial underestimation. In developing 

countries, the multiplicity of colonizing organisms may be even higher (42). 

With two or more organisms occupying the stomach of a host, an important 

question is whether the strains are competivite, cooperative, or indifferent to 

one another. The presence of recombination, especially through conjugation 

(43), already suggests one potential from of cooperativity, the exchange of 

genetic material. Sexual reproduction offers many survival advantages over 

asexual replication. Whether further cooperativity exists, as has been observed 

among commensal populations in the oral cavity, remains to be determined. 

Strain differences imply the potential for competition for scarce resources, such 

as nutrients or binding sites. Bacteria use mechanisms such as bacteriocins to 

gain advantage over competitors; however, none have yet been described for 

H. pylori. Alternatively, different strains can co-exist because each colonizes 

a different, perhaps exclusive niche. Such a phenomenon may exist, for example, 

among cagA* and cagA~ strains, in which differences in susceptibility to acidic 

pH may reflect the particular niches occupied by these organisms. 

CONCLUSIONS 

The major selective pressures on H. pylori appear to be directed toward 

ensuring persistence in particular hosts, and ultimately transmission to new 
hosts. In such a context, the development of disease may be regarded as an 

accident, or the “cost of doing business”. The emergence of peptic ulceration as 

a “disease of civilization”, may reflect changes in the ecology of the stomach. 

These may include introduction of new H. pylori strains, or alterations in the 

balances between host and microbes. Exploration of these questions will be of 
particular interest in the coming years. 
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