PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2000 | 59 | 4 |

Tytuł artykułu

The cytoarchitectonic and neuronal structure of the red nucleus in guinea pig: Nissl and Golgi studies

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present studies were carried out on the brains of adult guinea pigs, DunkinHartley strain. On the basis of preparations, they were stained according to the Nissl and the Klüver-Barrera method’s; a short description of the cytoarchitectonics and the characteristics of the rubral cells were written. The red nucleus (RN) of the guinea pig is 1.2 mm in length. Three cellular parts in RN, and three classes (A, B, C) of the rubral cells were distinguished. Taking into consideration the predominant cell size, RN was divided into magnocellular part (RNm), parvocellular part (RNp) and intermediate part (RNi). On the basis of Golgi impregnated preparations four neuronal types (I, II, III, IV) were distinguished. To sum up, in the guinea pig were observed: the large, mainly multipolar (type I) and bipolar (type II) spiny being coarse (class A) in Nissl material; the medium-sized, triangular, aspiny (type III) corresponding to the fine cells (class B); and the small, both spiny and aspiny neurons (type IV), which are the fine or achromatic cells (classes B or C) in Nissl stained slices. The highest degree of dendritic branching was observed in type I, whereas the lowest in cells of types III and IV.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

59

Numer

4

Opis fizyczny

p.333-342,fig.

Twórcy

autor
  • University of Warmia and Mazury, Zolnierska 14, 10-561 Olsztyn, Poland
autor
autor

Bibliografia

  • 1. Adogwa AO, Lakshminarasimhan A (1982) The morphology and cytoarchitecture of the red nucleus of the one-humped camel (Camelus dromedarius). J Hirnforsch, 23: 627–633.
  • 2. André D, Vuillon-Cacciuttolo G, Bosler O (1987) GABA nerve endings in the rat red nucleus combined detection with serotonin terminals using dual immunocytochemistry. Neuroscience, 23: 1095–1102.
  • 3. Bruinvels AT, Landwehrmeyer B, Gustafson EL, Durkin MM, Mengod G, Branchek TA, Hoyer D, Palacios JM (1994) Localization of 5-HT1B, 5-HT 1Da, 5-HT1E and 5-HT1F Receptor Messenger RNA in rodent and primate brain. Neuropharmacol, 33: 367–386.
  • 4. Campbell CBG (1976) Morphological homology and the nervous system. In: Masterton RB, Hodos W, Jerison H (eds). Evolution, brain, and behavior: Persistent problems. Lawrence Erlbaum Associates, Inc., Hillsdale, New Jersey, 143–151.
  • 5. Condé F (1987) Further studies on the use of the fluorescent tracers Fast blue and Diamidino yellow: effective uptake area and cellular storage sites. J Neurosci Meth, 21: 31–43.
  • 6. Felten DL, Sladek JR (1983) Monoamine distribution in primate brain V. Monoaminergic nuclei: Anatomy, pathways and local organization. Brain Res Bull, 10: 171–284.
  • 7. Fuxe K, Tinner B, Chadi G, Härfstrand A, Agnati LF (1994) Evidence for a regional distribution of hyaluronic acid in the rat brain using a highly specific hyaluronic acid recognizing protein. Neurosci Lett, 169: 25–30.
  • 8. Giuffrida R, Volsi GLI, Perciavalle V, Urbano A (1983) Pyramidal and non-pyramidal projection from cortical areas 4 and 6 to the red nucleus in the cat. Neurosci Lett, 40: 227–231.
  • 9. Goshgarian HG, Koistinen JM, Schmidt ER (1983) Cell death and changes in the retrograde transport of horseradish peroxidase in rubrospinal neurons following spinal cord hemisection in the adult rat. J Comp Neurol, 214: 251–257.
  • 10. Henry JM (1982) Anatomy of the brainstem. In: Schaltenbrand G and Walker AE (eds). Stereotaxy of the human brain. Georg Thieme Verlag, Stuttgart, 37–57.
  • 11. Hodos W (1976) The concept of homology and the evolution of behavior. In: Masterton RB, Hodos W, Jerison H (eds). Evolution, brain, and behavior: Persistent problems. Lawrence Erlbaum Associates, Inc., Hillsdale, New Jersey, 153–167.
  • 12. Holstege G, Blok BF, Ralston DD (1988) Anatomical evidence for red nucleus projections to motoneuronal cell groups in the spinal cord of the monkey. Neurosci Lett, 95: 97–101.
  • 13. Jerison HJ (1976) Principles of the evolution of the brain and behavior. In: Masterton RB, Hodos W, Jerison H (eds). Evolution, brain, and behavior: Persistent problems. Lawrence Erlbaum Associates, Inc., Hillsdale, New Jersey, 23–45.
  • 14. Kennedy PR, Gibson AR, Houk JC (1986) Functional and anatomic differentiation between parvicellular and magnocellular regions of red nucleus in the monkey. Brain Res, 364: 124–136.
  • 15. King JS, Schwyn RC, Fox CA (1971) The red nucleus in the monkey (Macaca Mulatta): a Golgi and an electron microscopic study. J Comp Neurol, 142: 75–108.
  • 16. Marchand R, Poirier L (1982) Autoradiographic study of the neurogenesis of the inferior olive, red nucleus and cerebellar nuclei of the rat brain. J Hirnforsch, 23: 211–224.
  • 17. Monzon Mayor M, Yanes Mendez C M, Trujillo C M. (1986) A Nissl, Golgi-Kopsch and ultrastructural study of the Gallotia galloti red nucleus. J Hirnforsch, 27: 67–78.
  • 18. Morgane PJ, Jacobs MS (1972) Comparative anatomy of the cetacean nervous system. In: Harrison RJ (ed.). Functional anatomy of marine mammals, Academic Press, London, 118–244.
  • 19. Oka H, Jinnai K (1978) Projections from the parietal association cortex to the inferior olive via the parvocellular red nucleus in cats. In: Ito M, Tsukahara N, Kubota K, Yagi K (eds). Integrative control functions of the brain, Vol. I, Kodansha, Tokyo, 140–142.
  • 20. Oka H, Jinnai K (1978) Cerebrocerebellar connections through the parvocellular part of the red nucleus. In: Ito M, Tsukahara N, Kubota K, Yagi K (eds). Integrative control functions of the brain, Vol. I, Kodansha, Tokyo, 184–186.
  • 21. Onodera S (1984) Olivary projections from the mesodiencephalic structures in the cat studied by means of axonal transport of horseradish peroxidase and tritiated amino acids. J Comp Neurol, 227: 37–49.
  • 22. Ostrowska A, Sikora E, Mierzejewska-Krzyżanowska B, Zimny R (1993) The dentatorubral projection in the rabbit with emphasis on distinction from the interpositorubral connectivity: An HRP retrograde tracer study. J Hirnforsch, 34: 9–23.
  • 23. Padel Y, Sybirska E, Bourbonnais D, Vinay L (1988) Electrophysiological identification of a somaesthetic pathway to the red nucleus. Behav Brain Res, 28: 139–151.
  • 24. Padel Y, Relova JL (1991) Somatosensory responses in the cat motor cortex I. Identification and course of an afferent pathway. J Neurophysiol, 66: 2041–2058.
  • 25. Padel Y (1993) Les noyaux Rouges Magnocellulaire et Parvocellulaire. Aspects anatomo-fonctionnels de leurs relations avec le cervelet et d’autres centres nerveux. Rev Neurol (Paris), 149: 703–715.
  • 26. Ralston DD, Milroy AM, Holstege G (1988) Ultrastructural evidence for direct monosynaptic rubrospinal connections to motoneurons in Macaca mulatta. Neurosci Lett, 95: 102–106.
  • 27. Ramón-Moliner E (1968) The morphology of dendrites. In: Bourne GH (ed.). The structure and function of nervous tissue. Vol. I. Academic Press Inc., New York, 205–264.
  • 28. Reid JM, Gwyn DG, Flumerfelt BA (1975) A cytoarchitectonic and Golgi study of the red nucleus in the rat. J Comp Neurol, 162: 337–361.
  • 29. Reid JM, Flumerfelt BA, Gwyn DG (1975) An ultrastructural study of the red nucleus in the rat. J Comp Neurol, 162: 363–385.
  • 30. Sadun AA, Pappas GD (1978) Development of distinct cell types in the feline red nucleus: A Golgi and electron microscopic study. J Comp Neurol, 182: 325–365.
  • 31. Strominger NL, Truscott TC, Miller RA, Royce GJ (1979) An autoradiographic study of the rubroolivary tract in the rhesus monkey. J Comp Neurol, 183: 33–46.
  • 32. Strominger RN, McGiffen JE, Strominger NL (1987) Morphometric and experimental studies of the red nucleus in the albino rat. Anat Rec, 219: 420–428.
  • 33. Sturrock RR (1990) Age related changes in neuron number in the mouse red nucleus. J Hirnforsch, 31: 399–403.
  • 34. Szteyn S, Równiak M, Robak A (1998) Types of neurons in the nucleus ruber of the European bison: KlüverBarrera and Golgi studies. Folia Morphol, 57: 315–319.
  • 35. Villablanca JR, Olmstead ChE, Sonnier BJ, McAllister JP, Gomez F (1982) Evidence for a crossed corticorubral projection in cats with one cerebral hemisphere removed neonatally. Neurosci Lett, 33: 241–246.
  • 36. Vinay L, Padel L, Bourbonnais D, Steffens H (1993) An ascending spinal pathway transmitting a central rhythmic pattern to the magnocellular red nucleus in the cat. Exp Brain Res, 97: 61–70.
  • 37. Zajac CS, Bunger PC, Moore JC (1989) Changes in red nucleus neuronal development following maternal alcohol exposure. Teratology, 40: 567–570.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-513c2845-b4a5-4c25-b87a-881ac1c2e6ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.