PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 55 | 2 |

Tytuł artykułu

Enhancement of oil degradation by co-culture of hydrocarbon degrading and biosurfactant producing bacteria

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this study the biodegradation of oil by hydrocarbon degrading Pseudomonas putida in the presence of a biosurfactantproducing bacterium was investigated. The co-culture of test organisms exhibited improved degradation capacities, in a reproducible fashion, in aqueous and soil matrix in comparison to the individual bacterium culture. Results indicate that the in situ biosurfactant production not only resulted in increased emulsification of the oil but also change the adhesion of the hydrocarbon to cell surface of other bacterium. The understanding of interactions beetwen microbes may provide opportunities to further enhancement of contaminants biodegradation by making a suitable blend for bioaugmentation.

Wydawca

-

Rocznik

Tom

55

Numer

2

Opis fizyczny

p.139-146,fig.,ref.

Twórcy

autor
  • Indian Oil Corporation, Research and Development Centre, Faridabad-121007, Haryana, India
autor
autor

Bibliografia

  • Abalos A., M. Vinas, J. Sabate, M.A. Manresa and A.M. Solanas. 2004. Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnohpid produced by Pseudomonas aeruginosa AT10. biodegradation 15: 249-260.
  • Banat I.M., R.S. Makkar and S.S. Cameotra. 2000. Potential commercial applications of microbial surfactants. Appt. Microbiol. Biotechnol. 53: 495-508.
  • Bonilla M., C. Olivaro, M. Corona, A. Vazquez and M. Soubes. 2005. Production and characterization of a new bioemulsifier from Pseudomonasputida ML2. J. Appl. Microbiol. 98: 456-463.
  • Boonchan S., M.L. Britz and G.A. Stanley. 1998. Surfactant-enhanced biodegradation of high molecular weight poly-cyclic aromatic hydrocarbons by Stenotrophomonas maltophilia. Biotechnol. Bioenginer. 59: 482-494.
  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-254.
  • Calfee M.W., J.G. Shelton, J.A. McCubrey and S. Pesci. 2005. Solubility and bioactivity of the Pseudomonas quinolone signal are increased by a Pseudomonas aeruginosa-pxoduced surfactant. Infect. Immun. 73: 878-882.
  • Carrillo P.G., C. Mardaraz, S.I.Pitta-Alvarez and A.M. Giulietti. 1996. Isolation and selection of biosurfactant producing bacteria. World J. Microbiol. Biotechnol. 12: 82-84.
  • Chang J.S., M. Radosevich, Y. Jin and D.K. Cha. 2004. Enhancement of phenanthrene solubilization and biodegradation by trehalose lipid biosurfactants. Environ.Toxicol. Chem. 23: 2816-2822.
  • Chen W.P. and T.T. Kuo. 1993. A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res. 21: 2260.
  • Dahlback B., M. Hermansson, S. Kjelleberg and B. Norkrans. 1981. The hydrophobicity of bacteria an important factor in their initial adhesion at the air-water interface. Arch. Microbiol. 128: 267-270.
  • Dean S.M., Y. Jin, D.K. Cha, S.W. Wilson and M. Radosevich. 2001. Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria. J. Environ. Qual. 30: 1126-1133.
  • Falatko D.F. and J.T. Novak. 1992. Effects of biologically produced surfactants on the mobility and biodegradation of petroleum hydrocarbons. Water Environ. Res. 64: 163-169.
  • Guerry P. and R.R. Colwell. 1977. Isolation of cryptic plasmid deoxyribonucleic acid from Kanagawa positive strains of Vibrio parahemolyticus. Infect. Immunol. 16: 328-334.
  • Hansen J.B. and R.H. Olsen. 1978. Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMGl and pMG5. J. Bacteriol. 135: 227-238.
  • Ilori M.O. and D.I. Amund. 2001. Production of a peptidoglycolipid bioemulsifier by Pseudomonas aeruginosa grown on hydrocarbon. Z. Naturforsch. C. 56: 547-552.
  • Ito S. and S. Inoue. 1982. Sophorolipids from Torulopsis bombicola: possible relation to alkane uptake. Appl. Environ. Microbiol. 43: 1278-1283.
  • Kaplan N. and E. Rosenberg. 1982. Exopolysaccharide distribution of and bioemulsifier production by Acinetobacter calcoaceticus BD4 and BD413. Appl. Environ. Microbiol. 44: 1335-1341.
  • Koch A., O. Kappeli, A. Fiechter and J. Reiser. 1991. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J. Bacteriol. 173: 4212-4219.
  • Kodama K., K. Umehara, K. Shimizu, S. Nakatami, Y. Minnoda and K. Yamada. 1973. Identification of microbial products from dibenzothiophene and its proposed oxidation pathway. Agric. Biol. Chem. 37: 45-50.
  • Kuyukina M.S., I.B. Ivshina, S.O. Makarov, L.V Litvinenko, C.J. Cunningham and J.C. Philp. 2005. Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ. Int. 31: 155-161.
  • Lu J.J., CL. Perng, S.Y Lee and C.C. Wan. 2000.Use of PCR with universal primers and restriction endonuclease digestions for detection and identification of common bacterial pathogens in cerebrospinal fluid. J. Clinical Microbiol. 38: 2076-2080.
  • Malachowsky K.J., T.J. Phelps, A.B. Teboli, D.E. Minnikin and D.C. White. 1994. Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species. Appl. Environ. Microbiol. 60: 542-548.
  • Neu T.R. 1996. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol. Rev. 60: 151-166.
  • Noordman W.H., J.H. Wachter, G.J. De Boer and D.B. Janssen. 2002. The enhancement by surfactants of hexa-decane degradation by Pseudomonas aeruginosa varies with substrate availability. J. Biotechnol. 94: 195-212.
  • Ortega-Calvo J.J. and M. Alexander. 1994. Roles of bacterial attachment and spontaneous partitioning in the biodegradation of naphthalene initially present in nonaqueous-phase liquids. Appl. Environ. Microbiol. 60: 2643-2646.
  • Płaza G.A., K. Ulfig and R.L. Brigmon. 2005. Surface active properties of bacterial strains isolated from petroleum hydrocarbon-bioremediated soil. Polish J. Microbiol. 54: 161-167.
  • Rahman K.S.M., I.M. Banat, J. Thahira, T. Thayumanavan and P. Lakshmanaperumalsamy. 2002. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresour. Technol. 81: 25-32.
  • Rahman K.S.M., T.J. Rahman, Y. Kourkoutas, I. Petsas, R. Marchant and I.M. Banat. 2003. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour. Technol. 90: 159-168.
  • Rosenberg M. and E. Rosenberg. 1981. Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexa-decane. J. Bacteriol. 148: 51-57
  • Rosenberg M. and E. Rosenberg. 1985. Bacterial adherence at the hydrocarbon-water interface. Oil Petrochem. Pollut. 2: 155-162.
  • Spiro R.G. 1966. Analysis of sugars found in glycoproteins. Methods Enzymol. 8: 7-9.
  • Stelmack P.L., M.R. Gray and M.A. Pickard. 1999. Bacterial adhesion to soil contaminants in the presence of surfactants. Appl. Environ. Microbiol. 65: 163-168.
  • Tahzibi A., F. Kamal and M.M. Assadi. 2004. Improved production of rhamnolipids by a Pseudomonas aeruginosa mutant. Iran. Biomed. J. 8: 25-31.
  • Van Hamme J.D. and O.P. Ward. 2001. Physical and metabolic interactions of Pseudomonas sp. strain JA5-B45 and Rhodococcus sp. strain F9-D79 during growth on crude oil and effect of a chemical surfactant on them. Appl. Environ. Microbiol. 67: 4874-4879.
  • Van Hamme J.D., A. Singh and O.P. Ward. 2003. Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 67: 503-549.
  • Wei Q.F., R.R. Mather and A.F. Fotheringham. 2005. Oil removal from used sorbents using a biosurfactant. Bioresour. Technol. 96: 331-334.
  • Weisburg W.G., S.M. Barns, D.A. Pelletier and D.J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
  • Wouter H.N. and B.J. Dick. 2002. Rhamnolipid stimulate uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl. Environ. Microb. 68: 4502-4508.
  • Youssef N.H., K.E. Duncan, D.P. Nagle, K.N. Savage, R.M. Knapp and M.J. Mcinerney. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Methods 56: 339-347.
  • Zhang Y. and R.M. Miller. 1994. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl. Environ. Microbiol. 60: 2101-2106.
  • Zinjarde S.S. and A. Pant. 2002. Emulsifier from a tropical marine yeast, Yarrowia lipolytica NCIM 3589. J. Basic Microbiol. 42: 67-73.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-5117dd0d-abe0-4083-9204-3b508ad9e991
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.