PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 16 | 3 |

Tytuł artykułu

Use of metallic iron for decontamination of solution containing Ni[II]-citrate

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The use of carbon iron and the mechanical retread of iron surface enables us to remove both Ni(II ) and citrate from solutions containing the Ni(II )–citrate complex. The duration of decontamination and the consumption of Fe and acid depend on the complex concentration, pH, load and the presence of background electrolytes. The observed pseudo first order rate constants for citrate removal using carbon steel plates were kobs = 0.42; 0.082 and 0.068 at load 200; 80 and 20 g·l⁻¹, respectively. Chemical analysis, FT-IR and XRD investigations have shown that the precipitate formed contains mainly iron oxides, which exceed the citrate content in the precipitate several times.

Wydawca

-

Rocznik

Tom

16

Numer

3

Opis fizyczny

p.397-402,fig.,ref.

Twórcy

autor
  • Institute of Chemistry, A.Gostauto 9, Vilnius LT 01108, Lithuania
autor

Bibliografia

  • 1. WU L.H., LUO Y.M., CHRISTIE P., WONG M.H. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere 50 (6), 819, 2003.
  • 2. WASAY S.A., BARRINGTON S.F., TOKUNAGA S. Remediation of Soils Polluted by Heavy Metals using Salts of Organic Acids and Chelating Agents. Environmental Technology, 19(4), 369, 1998.
  • 3. WASAY S.A., BARRINGTON S.F., TOKUNAGA S. Organic Acids for the In Situ Remediation of Soils Polluted by Heavy Metals: Soil Flushing in Colummns. Water, Air, & Soil Pollution, 127 (1-4), 301, 2001.
  • 4. RAVERA M., CICCARELLI C., GASTALDI D., RINAUDO C., CASTELLI C., OSELLA D. An experiment in the electrokinetic removal of copper from soil contaminated by the brass industry. Chemosphere 63 (6), 950, 2006.
  • 5. KIM S.-O., KIM K.-W., STÜBEN D. Evaluation of Electrokinetic Removal of Heavy Metals from Tailing Soils. J. of Environmental Engineering, 128(8), 705, 2002.
  • 6. FRANCIS A.J., DODGE C.J., GILLOW J.B. Biodegradation of Metal Citrate complexes and Implications for Toxic Metal Mobility. Nature 356 (6365), 140, 1992.
  • 7. PTASHEKAS M.,. BUDILOVSKI J J., ZAITSEV V., MAKAROV S. Ni and Co containing plating waste water treatment technology, Chemija 4(179), 41, 1990.
  • 8. FAN M., ASCE M., BROWN R.C. WHEELOCK TH.D., LAABS F.C. Synthesis, Characterization, and Coagulation of Polymeric Ferric Sulfate, Journal of Environmentala Engineering 128, 483, 2002.
  • 9. MATHESON J.L., TRATNEYK P.G. Reductive dehalogenation of chlorinated methanes by iron metal, Environmental Science and Technology 28(12), 2045, 1994.
  • 10. CASEY F.X.M., ONG S.K, HORTON R. Degradation and Transformation of Trichloretylene in Miscible-Displacement Experiments through Zerovalent Metals. Environmental Science and Technology, 34, 5023, 2000.
  • 11. CLARK II C.J., RAO P.S.C., ANNABLE M.D. Degradation of perchlorethylene in cosolvent solutions by zero-valent iron. Journal of Hazardous Materials 96, 65, 2003.
  • 12. GABER H.M., COMFORT S.D., SHEA P.H., MACHACEK T.A. Metachlor Dechlorination by Zerovalent Iron during Unsaturated Transport, Journal of Environmental Quality, 31, 962, 2002.
  • 13. ATENAS G.M., MIELCZARSKI E.,.MIELCZARSKI J.A, LAMBER T J., EHRH ARDT J.-J. Discoloration of wastewater from textile industry in the presence of metallic iron, In book: REW AS’2004, Madrid, TMS -INASME T, vol.II , pp. 1215-1224, 2004.
  • 14. AGRAWAL A., TRATNYEK P.G. Reduction of nitro aromatic compounds by zero-valent iron metal, Environmental Science and Technology 30(1), 153, 1996.
  • 15. CHENG F., MUFTIKAN R., FERNANDO Q., KORTE N. Reduction of nitrate to ammonia by zero-valent iron, Chemosphere 35, 2689, 1997.
  • 16. NORADAUM CH.E., CHENG I.F. EDTA Degradation Induced by Oxygen Activation in a Zerovalent Iron/Air/Water System, Environmental Science and Technology 39(18), 7158, 2005.
  • 17. Schrick B., Hydutsky B.W., Blough J.L., Mallouk T.E. Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater, Chemistry of. Materials 16, 2187, 2004.
  • 18. GYLIENĖ O., AIKAITĖ J., NIVINSKIENĖ O. Recycling of Ni (II)-citrate complexes using precipitation in alkaline solutions. Journal of Hazardous Materials 109, 105, 2004.
  • 19. GYLIENĖ O., ŠALKAUSKAS M., JUŠKĖNAS R. The Use of Organic Acids as Precipitants for Metal Recovery from Galvanic Solutions. J. Chem.Techn.Biotechnol 70, 111, 1997

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-510b4a32-403e-49e4-8922-5fe59da686d0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.