PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 48 | 3 |

Tytuł artykułu

Mechanisms of physiological regulation of RNA synthesis in bacteria: new discoveries breaking old schemes

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Although in bacterial cells all genes are transcribed by RNA polymerase, there are 2 additional enzymes capable of catalyzing RNA synthesis: poly(A) polymerase I, which adds poly(A) residues to transcripts, and primase, which produces primers for DNA replication. Mechanisms of actions of these 3 RNA-synthesizing enzymes were investigated for many years, and schemes of their regulations have been proposed and generally accepted. Nevertheless, recent discoveries indicated that apart from well-understood mechanisms, there are additional regulatory processes, beyond the established schemes, which allow bacterial cells to respond to changing environmental and physiological conditions. These newly discovered mechanisms, which are discussed in this review, include: (i) specific regulation of gene expression by RNA polyadenylation, (ii) control of DNA replication by interactions of the starvation alarmones, guanosine pentaphosphate and guanosine tetraphosphate, (p)ppGpp, with DnaG primase, (iii) a role for the DksA protein in ppGpp-mediated regulation of transcription, (iv) allosteric modulation of the RNA polymerase catalytic reaction by specific inhibitors of transcription, rifamycins, (v) stimulation of transcription initiation by proteins binding downstream of the promoter sequences, and (vi) promoter-dependent control of transcription antitermination efficiency.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

48

Numer

3

Opis fizyczny

p.281-294,ref.

Twórcy

  • University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
autor
autor

Bibliografia

  • Altmann CR, Solow-Cordero DE, Chamberlin MJ, 1994. RNA cleavage and chain elongation by Escherichia coli DNA-dependent RNA polymerase in a binary enzyme. RNA complex. Proc Natl Acad Sci USA 91: 3784-3788.
  • Artsimovitch I, Patlan V, Sekine S, Vassylyeva MN, Hosaka T, Ochi K, et al. 2004. Structural basis for transcription regulation by alarmone ppGpp. Cell 117: 299-310.
  • Artsimovitch I, Vassylyeva MN, Svetlov D, Svetlov V, Perederina A, Igarashi N, et al. 2005. Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell 122: 351-363.
  • August JT, Ortiz PJ, Hurwitz J, 1962. Ribonucleic acid-dependent ribonucleotide incorporation. I. Purification and properties of the enzyme. J Biol Chem 237: 3786-3793.
  • Autret S, Levine A, Vannier F, Fujita Y, Seror SJ, 1999. The replication checkpoint control in Bacillus subtilis: identification of a novel RTP-binding sequence essential for the replication fork arrest after induction of the stringent response. Mol Microbiol 31: 1665-1679.
  • Avarbock D, Salem J, Li LS, Wang ZM, Rubin H, 1999. Cloning and characterization of a bifunctional RelA/SpoT homologue from Mycobacterium tuberculosis. Gene 233: 261-269.
  • Barańska S, Gabig M, Węgrzyn A, Konopa G, Herman-Antosiewicz A, Hernandez P, et al. 2001. Regulation of the switch from early to late bacteriophage lambda DNA replication. Microbiology 147: 535-547.
  • Barker MM, Gaal T, Josaitis CA, Gourse RL 2001. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J Mol Biol 305: 673-688.
  • Bernardo LM, Johansson LU, Solera D, Skarfstad E, Shingler V, 2006. The guanosine tetraphosphate (ppGpp) alarmone, DksA and promoter affinity for RNA polymerase in regulation of sigma-dependent transcription. Mol Microbiol 60: 749-764.
  • Binns N, Masters M, 2002. Expression of the Escherichia coli pcnB gene is translationally limited using an inefficient start codon: a second chromosomal example of translation initiated at AUU. Mol Microbiol 44: 1287-1298.
  • Blum E, Carpousis AJ, Higgins CF, 1999. Polyadenylation promotes degradation of 3'-structured RNA by the Escherichia coli mRNA degradosome in vitro. J Biol Chem 274: 4009-4016.
  • Bonin I, Muhlberger R, Bourenkov GP, Huber R, Bacher A, Richter G, Wahl MC, 2004. Structural basis for the interaction of Escherichia coli NusA with protein N of phage lambda. Proc Natl Acad Sci USA 101: 13762-13767.
  • Borek E, Rockenbach J, Ryan A, 1956. Studies on a mutant of Escherichia coli with unbalanced ribonucleic acid synthesis. J Bacteriol 71: 318-323.
  • Branny P, Pearson JP, Pesci EC, Kohler T, Iglewski BH, van Delden C, 2001. Inhibition of quorum sensing by a Pseudomonas aeruginosa dksA homologue. J Bacteriol 183: 1531-1539.
  • Browning DF, Busby SJ, 2004. The regulation of bacterial transcription initiation. Nat Rev Microbiol 2: 57-65.
  • Burgess RR, Erickson B, Gentry D, Gribskov M, Hager D, Lesley S, et al. 1987. Bacterial RNA polymerase subunits and genes. In: Reznikoff WS, et al., eds. RNA polymerase and the regulation of transcription. New York: Elsevier Science Publications: 3-15.
  • Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA, 2001. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104: 901-912.
  • Cao GJ, Sarkar N, 1992. Identification of the gene for an Escherichia coli poly(A) polymerase. Proc Natl Acad Sci USA 89: 10380-10384.
  • Carmona M, Rodriguez MJ, Martinez-Costa O, de Lorenzo V, 2000. In vivo and in vitro effects of (p)ppGpp on the σ⁵⁴ promoter Pu of the TOL plasmid of Pseudomonas putida. J Bacteriol 182: 4711-4718.
  • Cashel M, Gallant J, 1969. Two compounds implicated in the function of the RC gene of Escherichia coli. Nature 221: 838-841.
  • Cashel M, Gentry D, Hernandez VJ, Vinella D, 1996. The stringent response. In: Escherichia coli and Salmonella: cellular and molecular biology. Washington DC: American Society for Microbiology I: 1458-1496.
  • Cellai S, Mangiarotti L, Vannini N, Naryshkin N, Kortkhonjia E, Ebright RH, Rivetti C, 2007. Upstream promoter sequences and alphaCTD mediate stable DNA wrapping within the RNA polymerase-promoter open complex. EMBO Rep 8: 271-278.
  • Chakraborty A, Nagaraja V, 2006. Dual role for transactivator protein C in activation of mom promoter of bacteriophage Mu. J Biol Chem 281: 8511-8517.
  • Chatterji D, Fujita N, Ishihama A, 1998. The mediator for stringent control, ppGpp, binds to the beta-subunit of Escherichia coli RNA polymerase. Genes Cells 3: 279-287.
  • Chiaramello AE, Zyskind JW, 1990. Coupling of DNA replication to growth rate in Escherichia coli: a possible role for guanosine tetraphosphate. J Bacteriol. 172: 2013-2019.
  • Conant CR, van Gilst MR, Weitzel SE, Rees WA, von Hippel PH, 2005. A quantitative description of the binding states and in vitro function of antitermination protein N of bacteriophage lambda. J Mol Biol 348: 1039-1057.
  • Condon C, Squires C, Squires CL, 1995. Control of rRNA transcription in Escherichia coli. Microbiol Rev 59: 623-645.
  • Farewell A, Kvint K, Nystrom T, 1998. Negative regulation by RpoS: a case of sigma factor competition. Mol Microbiol 29: 1039-1052.
  • Feng Y, Cohen SN, 2000. Unpaired terminal nucleotides and 5' monophosphorylation govern 3' polyadenylation by Escherichia coli poly(A) polymerase I. Proc. Natl. Acad Sci USA 97: 6415-6420.
  • Fiil N, Friesen JD, 1968. Isolation of "relaxed" mutants of Escherichia coli. J Bacteriol 95: 729-731.
  • Friedman DI, Court DL, 1995. Transcription antitermination: the lambda paradigm updated. Mol Microbiol 18: 191-200.
  • Gentry DR, Cashel M, 1995. Mutational analysis of the Escherichia coli spoT gene identifies distinct but overlapping regions involved in ppGpp synthesis and degradation. Mol Microbiol 19: 1373-1384.
  • Glinkowska M, Majka J, Messer W, Węgrzyn G, 2003. The mechanism of regulation of bacteriophage lambda pR promoter activity by Escherichia coli DnaA protein. J Biol Chem 278: 22250-22256.
  • Gourse RL, Ross W, Rutherford ST, 2006. General pathway for turning on promoters transcribed by RNA polymerases containing alternative sigma factors. J Bacteriol 188: 4589-4591.
  • Gusarov I, Nudler E, 2001. Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell 107: 437-449.
  • Guzman EC, Carrillo FJ, Jimenez-Sanchez A, 1988. Differential inhibition of the initiation of DNA replication in stringent and relaxed strains of Escherichia coli. Genet Res 51: 173-177.
  • Heinemeyer EA, Richter D, 1977. In vitro degradation of guanosine tetraphosphate (ppGpp) by an enzyme associated with the ribosomal fraction from Escherichia coli. FEBS Lett. 84: 357-361.
  • Herman A, Węgrzyn G, 1995. Effect of increased ppGpp concentration on DNA replication of different replicons in Escherichia coli. J Basic Microbiol. 35: 33-39.
  • Hernandez VJ, Bremer H, 1991. Escherichia coli ppGpp synthetase II activity requires spoT. J Biol Chem 266: 5991-5999.
  • Jasiecki J, Węgrzyn G, 2003. Growth-rate dependent RNA polyadenylation in Escherichia coli. EMBO Rep 4: 172-177.
  • Jasiecki J, Węgrzyn G, 2005. Localization of Escherichia coli poly(A) polymerase I in cellular membrane. Biochem Biophys Res Commun 329: 598-602.
  • Jasiecki J, Węgrzyn G, 2006a. Transcription start sites in the promoter region of the Escherichia coli pcnB (plasmid copy number) gene coding for poly(A) polymerase I. Plasmid 55: 169-172.
  • Jasiecki J, Węgrzyn G, 2006b. Phosphorylation of Escherichia coli poly(A) polymerase I and effects of this modification on the enzyme activity. FEMS Microbiology Letters 261: 118-122.
  • Jin DJ, Gross CA, 1988. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol 202: 45-58.
  • Jishage M, Kvint K, Shingler V, Nyström T, 2002. Regulation of σ-factor competition by the alarmone ppGpp. Genes Dev 16: 1260-1270.
  • Joanny G, Derout JL, Brechemier-Baey D, Labas V, Vinh J, Regnier P, Hajnsdorf E, 2007. Polyadenylation of a functional mRNA controls gene expression in Escherichia coli. Nucleic Acids Res. DOI: 10.1093/nar/gkml20.
  • Johnson NP, Baase WA, von Hippel PH, 2005. Low energy CD of RNA hairpin unveils a loop conformation required for lambda N antitermination activity. J Biol Chem 280: 32177-32183.
  • Jores L, Wagner R, 2003. Essential steps in the ppGpp-dependent regulation of bacterial ribosomal RNA promoters can be explained by substrate competition. J Biol Chem 278: 16834-16843.
  • Kajitani M, Ishihama A, 1994. Promoter selectivity of Escherichia coli RNA polymerase. Differential stringent control of the multiple promoters from ribosomal RNA and protein operons. J Biol Chem. 259: 1951-1957.
  • Kang PJ, Craig EA, 1990. Identification and characterization of a new Escherichia coli gene that is a dosage-dependent suppressor of a dnaK deletion mutation. J Bacteriol 172: 2055-2064.
  • Kapanidis AN, Margeat E, Ho SO, Kortkhonjia E, Weiss S, Ebright RH, 2006. Initial transcription by RNA polymerase proceeds through a DNA- scrunching mechanism. Science 314: 1144-1147.
  • Konopa G, Szalewska-Pałasz A, Schmidt A, Śrutkowska S, Messer W, Węgrzyn G, 1999. The presence of two DnaA-binding sequences is required for an efficient interaction of the Escherichia coli DnaA protein with each particular weak DnaA box region. FEMS Microbiol Lett 174: 25-31.
  • Kornberg A, Baker J, 1992. DNA replication, 2nd ed. New York: W.H. Freeman & Co.
  • Kvint K, Hosbond C, Farewell A, Nybroe O, Nystrom T, 2000a. Emergency derepression: stringency allows RNA polymerase to override negative control by an active repressor. Mol Microbiol 35: 435-443.
  • Kvint K, Farewell A, Nystrom T, 2000b. RpoS- dependent promoters require guanosine tetraphosphate for induction even in the presence of high level of as. J Biol Chem 275: 14795-14798.
  • Laurie AD, Bernardo LM, Sze CC, Skarfstad E, Szalewska-Pałasz A, Nystrom T, Shingler V, 2003. The role of the alarmone (p)ppGpp in sigma N competition for core RNA polymerase. J Biol Chem 278: 1494-503.
  • Levine A, Vannier F, Dehbi M, Henckes G, Seror SJ, 1991. The stringent response blocks DNA replication outside the ori region in Bacillus subtilis and at the origin in Escherichia coli. J Mol Biol. 219: 605-613.
  • Levine A, Autret S, Seror SJ, 1995. A checkpoint involving RTP, the replication terminator protein, arrests replication downstream of the origin during the Stringent Response in Bacillus subtilis. Mol Microbiol 15: 287-295.
  • Lobner-Olesen A, Marinus MG, Hansen FG, 2003. Role of SeqA and Dam in Escherichia coli gene expression: a global/microarray analysis. Proc Natl Acad Sci USA 100: 4672-4677.
  • Łyzen R, Węgrzyn G, Węgrzyn A, Szalewska-Pałasz A, 2006. Stimulation of the lambda pR promoter by Escherichia coli SeqA protein requires downstream GATC sequences and involves late stages of transcription initiation. Microbiology 152: 2985-2992.
  • Magnusson LU, Farewell A, Nystrom T, 2005. ppGpp: a global regulator in Escherichia coli. Trends Microbiol 13: 236-242.
  • McClure WR, Cech CL, 1978. On the mechanism of rifampicin inhibition of RNA synthesis. J Biol Chem 253: 8949-8956.
  • Mechold U, Cashel M, Steiner K, Gentry D, Malke H, 1996. Functional analysis of a relA/spoT gene homolog from Streptococcus equisimilis. J Bacteriol 178: 1401-1411.
  • Messer W, Weigel C, 1997. DnaA initiator - also a transcription factor. Mol Microbiol 24: 1-6.
  • Messer W, Weigel C, 2003. DnaA as a transcription regulator. Methods Enzymol. 370: 338-349.
  • Mittenhuber G, 2001. Comparative genomics and evolution of genes encoding bacterial (p)ppGpp synthetases/hydrolases (the Rel, RelA and SpoT proteins). J Mol Microbiol Biotechnol 3: 585-600.
  • Mohanty BK, Kushner SR, 1999. Residual polyadenylation in poly(A) polymerase I (pcnB ) mutants of Escherichia coli does not result from the activity encoded by the f310.gene. Mol Microbiol 34: 1094-1108.
  • Mohanty BK, Kushner SR, 2006. The majority of Escherichia coli mRNAs undergo post-transcriptional modification in exponentially growing cells. Nucleic Acids Res 34: 5695-5704.
  • Munson GP, Scott JR, 2000. Rns, a virulence regulator within the AraC family, requires binding sites upstream and downstream of its own promoter to function as an activator. Mol Microbiol 36: 1391-1402.
  • Munson GP, Holcomb LG, Scott JR, 2001. Novel group of virulence activators within the AraC family that are not restricted to upstream binding sites. Infect Immun 69: 186-193.
  • Murray KD, Bremer H, 1996. Control of spoT-dependent ppGpp synthetic and degradation in Escherichia coli. J Mol Biol 259: 41-57.
  • Narajczyk M, Barańska S, Węgrzyn A, Węgrzyn G, 2007a. Switch from theta to sigma replication of bacteriophage lambda DNA: factors involved in the process and a model for its regulation. Mol Genet Genomics DOI: 10.1007/s00438-007-0228-y.
  • Narajczyk M, Barańska S, Szambowska A, Glinkowska M, Węgrzyn A, Węgrzyn G, 2007b. Modulation of lambda plasmid and phage DNA replication by Escherichia coli SeqA protein. Microbiology 153: 1653-1663.
  • Newell KV, Thomas DP, Brekasis D, Paget MS, 2006. The RNA polymerase-binding protein RbpA confers basal levels of rifampicin resistance on Streptomyces coelicolor. Mol Microbiol 60: 687-696.
  • Nudler E, Gottesman ME, 2002. Transcription termination and anti-termination in E. coli. Genes Cells 7: 755-768.
  • Nystrom T, 1994. The glucose-starvation stimulon of Escherichia coli: induced and repressed synthesis of enzymes of central metabolic pathways and role of acetyl phosphate in gene expression and starvation survival. Mol Microbiol 12: 833-843.
  • O'HaraEB, Chekanova JA, Ingle CA, Kushner ZR, Peters E, Kushner SR, 1995. Polyadenylylation helps regulate mRNA decay in Escherichia coli. Proc Natl Acad Sci USA, 92: 1807-1811.
  • Paul B J, Barker MM, Ross W, Schneider DA, Webb C, Foster JW, Gourse RL, 2004. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118: 311-322.
  • Paul BJ, Berkmen MB, Gourse RL, 2005. DksA potentiates direct activation of amino acid promoters by ppGpp. Proc Natl Acad Sci USA 102: 7823-7828.
  • Perederina A, Svetlov V, Vassylyeva MN, Tahirov TH, Yokoyama S, Artsimovitch I, Vassylyev DG, 2004. Regulation through the secondary channel - structural framework for ppGpp-DksA synergism during transcription. Cell 118: 297-309.
  • Perron K, Comte R, van Delden C, 2005. DksA represses ribosomal gene transcription in Pseudomonas aeruginosa by interacting with RNA polymerase on ribosomal promoters. Mol Microbiol 56: 1087-1102.
  • Potrykus K, Węgrzyn G, Hernandez VJ, 2002. Multiple mechanisms of transcription inhibition by ppGpp at the lambda pR promoter. J Biol Chem 277: 43785-43791.
  • Potrykus K, Vinella D, Murphy H, Szalewska-Pałasz A, D'Ari R, Cashel M, 2006. Antagonistic regulation of Escherichia coli ribosomal RNA rrnB P1 promoter activity by GreA and DksA. J Biol Chem 281: 15238-15248.
  • Prasch S, Schwarz S, Eisenmann A, Wohrl BM, Schweimer K, Rosch P, 2006. Interaction of the intrinsically unstructured phage lambda N Protein with Escherichia coli NusA. Biochemistry 45: 4542-4549.
  • Regnier P, Arraiano CM, 2000. Degradation of mRNA in bacteria: emergence of ubiquitous features. BioEssays 22: 235-244.
  • Revyakin A, Liu C, Ebright RH, Strick TR, 2006. Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching. Science 314: 1139-1143;
  • Rivetti C, Guthold M, Bustamante C, 1999. Wrapping of DNA around the E. coli RNA polymerase open promoter complex. EMBO J 18: 4464-4475.
  • Rutherford ST, Lemke JJ, Vrentas CE, Gaal T, Ross W, Gourse RL, 2007. Effects of DksA, GreA, and GreB on transcription initiation: insights into the mechanisms of factors that bind in the secondary channel of RNA polymerase. J Mol Biol 366: 1243-1257.
  • Sarkar N, 1996. Polyadenylation of mRNA in bacteria. Microbiology 142: 3125-3133
  • Sarkar N, 1997. Polyadenylation of mRNA in prokaryotes. Annu Rev Biochem 66: 173-197.
  • Schreiber G, Ron EZ, Glaser G, 1995. ppGpp-mediated regulation of DNA replication and cell division in Escherichia coli. Curr Microbiol. 30: 27-32.
  • Sharma AK, Payne SM, 2006. Induction of expression of hfq by DksA is essential for Shigella flexneri virulence. Mol Microbiol 62: 469-479.
  • Shingler V, 2003. Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ Microbiol 5: 1226-1241.
  • Słomińska M, Węgrzyn A, Konopa G, Skarstad K, Węgrzyn G, 2001. SeqA, the Escherichia coli origin sequestration protein, is also a specific transcription factor. Mol Microbiol 40: 1371-1380.
  • Słomińska M, Konopa G, Barańska S, Węgrzyn G, Węgrzyn A, 2003a. Interplay between DnaA and SeqA proteins during regulation of bacteriophage lambda pR promoter activity. J Mol Biol 329: 59-68.
  • Słomińska M, Konopa G, Ostrowska J, Kędzierska B, Węgrzyn G, Węgrzyn A, 2003 b. SeqA-mediated stimulation of a promoter activity by facilitating functions of a transcription activator. Mol Microbiol 47: 1669-1679.
  • Sperandio V, Mellies JL, Delahay RM, Frankel G, Crawford JA, Nguyen W, Kaper JB, 2000. Activation of enteropathogenic Escherichia coli (EPEC) LEE2 and LEE3 operons by Ler. Mol Microbiol 38: 781-793.
  • Steege DA, 2000. Emerging features of mRNA decay in bacteria. RNA 6: 1079-1090.
  • Strzelczyk B, Słomińska-Wojewódzka M, Węgrzyn G, Węgrzyn A, 2003. Non-random distribution of GATC sequences in regions of promoters stimulated by the SeqA protein of Escherichia coli. Acta Biochim Pol 50: 941-945.
  • Sy J, 1977. In vitro degradation of guanosine 5'-diphosphate, 3'-diphosphate. Proc Natl Acad Sci USA. 74: 5529-5533.
  • Szalewska-Pałasz A, Węgrzyn A, Herman A, Węgrzyn G, 1994. The mechanism of the stringent control of lambda plasmid replication. EMBO J 13: 5779-5785.
  • Szalewska-Pałasz A, Wróbel B, Węgrzyn G, 1998a. Rapid degradation of polyadenylated oop RNA FEBS Lett 432: 70-72.
  • Szalewska-Pałasz A, Węgrzyn A, Błaszczak A, Taylor K, Węgrzyn G, 1998b. DnaA stimulated transcriptional activation of oriλ: Escherichia coli RNA polymerase ß subunit as a transcriptional activator contact site. Proc Natl Acad Sci USA 95: 4241-4246.
  • Szalewska-Pałasz A, Lemieszek E, Pankiewicz A, Węgrzyn A, Helinski DR, Węgrzyn G, 1998c. Escherichia coli dnaA gene function and bacteriophage lambda replication. FEMS Microbiol Lett 167: 27-32.
  • Szalewska-Pałasz A, Strzelczyk B, Herman- Antosiewicz A, Węgrzyn G, Thomas MS, 2003. Genetic analysis of bacteriophage lambda N-dependent antitermination suggests a possible role for the RNA polymerase alpha subunit in facilitating specific functions of NusA and NusE. Arch Microbiol 180: 161-168.
  • Szalewska-Pałasz A, Johansson LU, Bernardo LMD, Skarfstad E, Stec E, Brannstrom K, Shingler V, 2007. Properties of RNA polymerase bypass mutants: implications for ppGpp- and DksA-mediated control of sigma54-dependent transcription. J Biol Chem 282: 18046-18056.
  • Sze CC, Shingler V, 1999. The alarmone (p)ppGpp mediates physiological-responsive control at the σ⁵⁴-dependent pO promoter. Mol Microbiol 31: 1217-1228.
  • Taylor K, Węgrzyn G, 1995. Replication of coliphage lambda DNA. FEMS Microbiol Rev 17: 109-119.
  • Toulokhonov II, Shulgina I, Hernandez VJ, 2001. Binding of the transcription effector ppGpp to Escherichia coli RNA polymerase is allosteric, modular, and occurs near the N terminus of the ß'-subunit. J Biol Chem 276: 1220-1225.
  • Travers A, Muskhelishvili G, 2007. A common topology for bacterial and eukaryotic transcription initiation? EMBO Rep 8: 147-151.
  • Viducic D, Ono T, Murakami K, Susilowati H, Kayama S, Hirota K, Miyake Y, 2006. Functional analysis of spoT, relA and dksA genes on quinolone tolerance in Pseudomonas aeruginosa under nongrowing condition. Microbiol Immunol 50: 349-357.
  • Vieu E, Rahmouni AR, 2004. Dual role of boxB RNA motif in the mechanisms of termination/ antitermination at the lambda tRl terminator revealed in vivo. J Mol Biol 339: 1077-1087.
  • Wagner R, 2002. Regulation of ribosomal RNA synthesis in E. coli: effects of the global regulator guanosine tetraphosphate (ppGpp). J Mol Microbiol Biotechnol 4: 331-340.
  • Wang JD, Sanders GM, Grossman AD, 2007. Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 128: 865-875.
  • Wang Z, Yuan Z, Xiang L, Shao J, Węgrzyn G, 2006. tRNA-dependent cleavage of the ColEl plasmid- encoded RNA I. Microbiology 152: 3467-3476.
  • Webb C, Moreno M, Wilmes-Riesenberg M, Curtiss R 3 rd, Foster JW, 1999. Effects of DksA and ClpP protease on sigma S production and virulence in Salmonella typhimurium. Mol Microbiol 34: 112-123.
  • Węgrzyn G, Szalewska-Pałasz A, Węgrzyn A, Obuchowski M, Taylor K, 1995. Transcriptional activation of the origin of coliphage lambda DNA replication is regulated by the host DnaA initiator function. Gene 154: 47-50.
  • Węgrzyn A, Szalewska-Pałasz A, Błaszczak A, Liberek K, Węgrzyn G, 1998. Differential inhibition of transcription from sigma70- and sigma32-
  • dependent promoters by rifampicin. FEBS Lett 440: 172-174.
  • Węgrzyn G, 1999. Replication of plasmids during bacterial response to amino acid starvation. Plasmid 41: 1-16.
  • Węgrzyn G, Węgrzyn A, 2005. Genetic switches during bacteriophage lambda development. Prog Nucleic Acid Res Mol Biol 79: 1-48.
  • Weisberg RA, Gottesman ME, 1999. Processive antitermination. J Bacteriol 181: 359-367.
  • Wendrich TM, Marahiel MA, 1997. Cloning and characterization of a relA/spoT homologue from Bacillus subtilis. Mol Microbiol. 26: 65-79.
  • Wichelhaus T, Schafer V, Brade V, Boddinghaus B, 2001. Differential effect of rpoB mutations on antibacterial activities of rifampicin and KRM- 1648 against Staphylococcus aureus. J Antimicrob Chemother 47: 153-156.
  • Williams DL, Spring L, Collins L, Miller LP, Heifets LB, Gangadharam PR, Gillis TP, 1998. Contribution of rpoB mutations to development of rifamycin cross-resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 42: 1853-1857.
  • Wróbel B, Węgrzyn G, 1998. Replication regulation of ColE1-like plasmids in amino acid-starved Escherichia coli. Plasmid 39: 48-62.
  • Wróbel B, Herman-Antosiewicz A, Szalewska-Pałasz A, Węgrzyn G, 1998. Polyadenylation of oop RNA in the regulation of bacteriophage lambda development. Gene 212: 57-65
  • Xia T, Wan C, Roberts RW, Zewail AH, 2005. RNA-protein recognition: single-residue ultrafast dynamical control of structural specificity and function. Proc Natl Acad Sci USA 102: 13013-13018.
  • Xiao H, Kaiman M, Ikehara K, Zemel S, Glaser G, Cashel M, 1991. Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutant can be eliminated by spoT null mutations. J Biol Chem 266: 5980-5990.
  • Xu F, Cohen SN, 1995. RNA degradation in Escherichia coli regulated by 3' adenylation and 5' phosphorylation. Nature 374: 180-183.
  • Yehudai-Resheff S, Schuster G, 2000. Characterization of the E. coli poly(A) polymerase: nucleotide specificity, RNA-binding affinities and RNA structure dependence Nucleic Acids Res 28: 1139-1144.
  • Zhou Y, Shi T, Mozola MA, Olson ER, Henthorn K, Brown S, Gussin GN, Friedman DI, 2006. Evidence that the promoter can influence assembly of antitermination complexes at downstream RNA sites. J Bacteriol 188: 2222-2232.
  • Zyskind JW, Smith DW, 1992. DNA replication, the bacterial cell cycle, and cell growth. Cell 69: 5-8.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-502ec897-e7ac-47cd-89c1-f6325207b8d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.