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A b s t r a c t. A method of linear correction of 
above-ground dry matter values, simulated by AFRC
WHEAT, a mechanistic model of wheat crop, is de
aaibcd. It uses values of dry matter and green leaf area 
mdCI[ observed at previous crop stages. Correction of 
current simulation is. based upon the differences be
tween observed and simulated values of cach or both 
variables for previous stages. The method is tested on 
thrce wheat datascts obtained from two locations in 
France: Avignon and Mons, with various genotypes, 
IOWing dates and crop conditions. A validation test 
using a cross validation method shows that the mean 
square error can be reduced down to 12 % of model 
error, depending on time stage and predictors. This 
method can be used to improve the prediction of finał 
yield by plant process models, using remotely sensed 
information. 

INTRODUCTION 

Crop simulation models have primarily 
been designed to synthesize existing know
ledge in crop physiology, but lately they 
have been proposed as tools for crop yield 
prediction [11 ], although several la ter 
studies have shown them more or less able 
to predict crop production over large areas 
[4,5]. Due to their components (large sets 
of crop state variables updated at short
time steps, genotype- and soil-specific coef
ficients), they can be adequately calibrated 
for one precise situation ( e.g., one field with 
one genotype ), but their extension to other 
sites is subject to several sources of error in 
simulation of finał crop production. Ac
cording to Swaney et al. [11 ], the two main 

types of error are: error in model structure 
and error in model parameter values. Each 
type of error can be addressed separately, 
first by improving the description of physio
logical processes and then by estimating 
site-specific values of parameters. These 
values may represent local genetic variability 
not accounted for in the model or highlight 
the deep statistical nature of parameters 
(model calibration in a test site partly reflects 
the particular pattern of environmental vari
ables, very similarly to purely empirical yield 
models). 

Estimating crop model parameters on a 
site during vegetation growth by using crop 
data taken at the site has been proposed by 
Swaney et al [11 ], in order to improve crop 
yield predictions. Delecolle and Guerif (2], 
and Maas [7] have derived calibration me
thods specifically adapted to the case where 
crop data are provided by remote sensing. 
Baret (1] suggests a generał scheme for 
model recalibration using radiometrie data. 
Another way of improving the results in a 
model is to deal with both error types by 
using prior knowledge on simulation errors 
caused by the model. lntermediate crop 
state variables and/or yield simulated values 
can be corrected if a correction term is esti
mated from deviations between simulated 
and measured intermediate crop variable 
values and from an empirical relationship 
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between these deviations and the variable 
to be corrected. This method does not mod
ify any parameter value in the model itself. 
Faivre et aL [3] show how the correction 
term can be linearly estimated from inter
mediate errors and solve the problem in a 
generał case where available crop data are 
randomly distributed over time. 

In this paper, we wish to investigate 
how such a correction method can be ap
plied to simulations of wheat state variable 
values in a simpler case where available crop 
data are evenly distributed over a biological 
timescale. 

MATERIALS AND MEIBODS 

Observed data 

Experimental data on winter wheats, 
spring wheats and intermediate types from 
two locations in France were employed: 
Avignon (43 °54' N, 4 °48' E, Mediterranean 
climate) and Mons (49°48' N, 3 °12' E, semi
oceanic climate). Apart from climate and 
latitude, sources ofvariation were large ran
ges of genotypes, sowing dates and years 
(Tubie 1). Data were sampled in experimen-

tal plots of various sizes, generally 2 m x 10 m, 
with two replications per treatment and 2 to 
4 samples per replication. The samples of 
2 m x 1 m on adjacent rows were harvested 
at various sampling intervals, in order to 
describe the whole crop cycle. Above-ground 
dry matter (dnn) was measured by oven 
drying at 85 °C for 2 days. In all experi
ments, global green area index (GAI) was 
estimated by measuring green area of indi
vidual plant organs (leaves, stems, ears) on 
a subsample with an optical area meter and 
using the ratio of subsample-to-sample dry 
weights for each type of organ. Daily weather 
data (minimum, maximum and wet bulb tem
peratures, short-w.ive radiation) were obtained 
from standard weather stations not more 
than 500 m from the experimental fields. Rom 
the plant information, three datasets have 
been constructed, in order to validate the 
method. The first dataset · named ~vignon', 
includes data from 4 years of experiments in 
this location. ~vignon Plus' contains the 
same data, plus data from experiments where 
only late observations of GAI and dry matter 
(GAl>3.5) were available. The mixed ~vig
non-Mons' dataset contains all data from 
both locations. 

Tab Ie 1. Location, gcnotypes and sowing dates of wheat e:xperiments used for linear correction of simulated data 

Location 

Avignon 

Mons 

Genotypes 

Arminda(w) 
Fidel (s) 
Prinqual (s) 

Tulent (i) ••• 
Arcane (i) 
Anninda (i)•u 
Tulent (i) ... 
Arminda(w) 
Cappelle(w) 
Courtot (i) 
Fidel(s) 
Pemel(w) 
Tulent (i) 
Vuka (w) 

Sowing Dates 

Nov. 28, 1986; • 
Oct. l, 1986; Nov. 28, 1986; Feb. 27, 1987 

Mar. 29, 1988•• •• 
Sept. 27, 1985 ; Oct. 25, 1985 ; Mar. 10, 1986 
Oct. 25, 1985 
Oct. 25, 1985 
Nov. 28, 1984 
Oct. 28, 1983; Dec. 10, 1983 
Oct. 28, 1983 
Oct. 28, 1983 
Sept. 30, 1983; Oct. 28, 1983; Dec. 10. 1983 
Sept. 30, 1983; Oct. 10, 1983 
Sept. 30, 1983; Oct. 28, 1983 
Oct. 28, 1983 

Explanations: w = winter; s=spring; i=intermediate; • two cxperiments (irrigated and dry); •• two expcriments 
(two sowing densities); ••• these genotypes and sowing dates only belong to Avignon Plus dataset. 
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Simulated values 

Daily simulated values of drm and GAI 
were obtained from AFRCWHEAT [8,12], 
a mechanistic model of wheat growth and 
development under optimal conditions. As 
this model uses a set of genetic coefficients 
values for sensitivities to vernalization and 
photopeńod, computed from an independent 
datatset, were applied to each genotype. 
Other coefficients, including duration of 
phenological phases and leaf geometrical 
properties, were kept constant over the 
situations (genotype x location x sowing 
date x year). 

Compering simulated wlues to obsenw data 

In order to provide a common time 
scale to all treatments, comparisons be
tween simulated and observed values were 
oonducted for the peńod from when measured 
GAI first exceeded 1.0 to the day when GAI 
first decreased below 1.0 late in the season. 
Including these two, seven evenly-spaced 
dates were selected. The seven dates of 
measurement closest to the evenly-spaced 
dates were thus used for comparisons be
tween simulated and observed values. 

Correction method 

Let drm~iJs (resp. GAI~iJs) be the value 
of above-ground dry matter (resp. green 
leaf area index) observed at time (i) and 

dnn~00 (resp. GAI}!)00) be the correspon-

ding simulated values. . 

Assuming that at time k, values of dmt~ 

and GAI~~s (i=1, .. ,k) have been observed, 
the problem is then to use this information 
to correct subsequent simulated values of 

dry matter dmt}!)00 (i=k+ 1, .. ,s) for which 
no observed values are available. We sug
gest using a linear correction term / 1

) to 

obtain more realistic values dnn~t with: 

(I) (i) (i) 
drmest= drmmod + Y (i=k+l, .. ,s) (l) 

The generał pattern of term/1) must be 
computed from previous experiments (his
torical datasets of observed and simulated 
values used as a calibration set) and current 
values ofy(i), estimated for each new experi
ment. This method can be described as fol
lows: drm(l)= t1rm}!)00- drmg~ and GAI(i)= 

G~00 -G~ (!=1,.~);andU= (u1,..,uJT 
(T·being the trampose operator) a subvector of 
vector V ofknown values: 

(l) (l) (k) (k) 
V=(GAI ,drm , ... , GAI ,drm )T 

(dim(U) Sdim(V)). 

Let W= (drm (k+l), ... , drm(s)l be the 
vector of drm deviations for forthcoming 
periods, known from the calibration dataset 
and y =(y(k+l), ... y(s)?. Rao [9] suggests a 
model for correcting current W given cur
rent U: 

-1 
Y = E("W) + cov(W,U) [var(U)] 

[U*-E(U)] 

(2) 

where E(W), E(U) and cov(W,U) are re
spectively vectors of means and covarian~ 
matrix for variables W and U, and var(U) 1s 
a definite positive dispersion matrix. Equa
tion (2) is computed with the known · cali
bration dataset and for a new experiment 
where a value U* of vector U has beei1 ob
served. 

This technique has been applied by Ku
char [6] in the EPM model for anticipating 
future weather values, and is similar to (al~ 
though simpler than) the work by Faivre et 
al. [3] on correction of crop yields simulated 
by the EPIC model [13]. 

In order to avoid prediction bias, the 
correction term Y has been modified as fol
lows: 

Z= (I -P) E(Jł') + P Y (3) 
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T a b I e 2. Absolutc mcan square error (MSE) of dry mattcr prediction by AFRCWHEAT model alonc 

Datasct 

i=l 2 3 

Avignon 
(N=12) 1220 13000 30830 

Avignon 
Plus 
(N=15) 3480 13500 25710 

Avignon 
and Mons 
(N=24) 1210 9120 26700 

where / is the identity matrix, P the diago
nal matrix of correlation coefficients be
tween variables drm(i) <i=k+l, ... ,s) and Uj 

(j = l, .. ,k) (Eq.3 minimizes the effect of Uj 

valuc::s that are loosely correlated to 
drm<1

) and gives a higher weight to 'his
torical' mean drm. deviation in this case). 
The values of y<i) values in Eq.1 were 
therefore replaced by the elements z<i) of 
vector Z. As our datasets were too small 
to be split into one ~libration and one 
validation set, terms z<i) were evaluated by 
Leave-One-Out (Cross Validation) [10]. 
In our case, only current simulated dry 
matters were corrected, assuming that fu
ture weather was unknown: vector W thus 
reduces to (drm(k+l)). 

MSEatstagc 

4 5 6 7 

42800 24620 58610 54610 

36450 25100 48620 51210 

29690 23720 56320 67750 

RESULTS 

The estimation errors on current above
ground dry matter that were obtained by the 
method described above are displayed in the 
following Tables 2 and 3. They oorrespond to 
the use of one, two or three previous values of 
GAI and/or previous values of dnn as predic
tors ( (i) 'predictors' will be used in the follow
ing . text as a shorter equivalent of variables 
used in U for estimatig the correction term, 
(ii) the reader should remember that 'dnn' 
and 'GAI' refer to differences between ob
served data and simulated values). Error is 

computed for each stage as a percentage of the 
simulation error which is achieved by the un
corrected AFRCWHEAT model. 

T a b I e 3. Rclativc mcan squarc error of dry mattcr prcdiction ~ on simulatcd and observed values of dry mattcr 

Relativc error 
Datascl Prcdictors 

on dry matter prediction at stage 

i=2 3 4 5 6 7 

Avignon drm(i-1) 77.6 11.7 24.8 20.7 66.5 60.4 
(N=l2) drm (i-l) drm (i-2) 23.4 29.4 22.3 76.8 80.7 

drm (i-l)' drm(i·2) 34.8 26.4 93.0 35.7 
drm (i-3)' 

Avignon drm(i·l) 44.4 16.9 35.7 44.0 72.8 76.2 
Plus drm (i-1) drm (i-2) 14.9 33.8 36.1 93.8 78.1 
(N-=15) drm (i-l)' drm(i-2) 39.8 41.0 96.7 99.7 

drm (i-3)' 

Avignon drm(i•l) 69.2 80.5 61.5 59.1 86.3 50.1 
and Mons drm (i-1) drm (i-2) 82.4 61.6 59.9 94.1 54.6 
(N=24) drm (i-1)' drm(i·2) 67.3 61.2 91.5 42.6 

drm (i-3)' 
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Correction by dry matter 

When previous values of dnn are used as 
predictors, it appears that the time evolution 
of error is not monotonie (fabie 3). lt most 
often presents a minimum for intermediate 
phases, which correspond to the almost linear 
period in the time evolution of dry matter. 
Errors are globally Iower for the first dataset 
and the results for Avignon Plus show that if 
only late information is added, the global 
error is increased. Concerning the mixed da
taset Avignon-Mons, the'variation of error is 
less pronounced, but its average level is 
higher, except for the last stage: globally, it 
appears that the number of dnn values used 
as predictors is less important than the time 
of correction and that using three previously 
observed dnn gives even worse results than 
using the last (or two last) value(s). 

corresponds to near-to-linear evolution of 
drm and GAI. lt should be noted that, for 
the last stage in Avignon-Mons, ::he error is 
tower than it is in other datasets. 

Correction by dry matter and GAI 

Table 5 displays the results of current 
drm correction when both drm and 
GAI known for previous stages are used 
as predictors. In this case, only two pre
vious values for each variable were used 
and we separated the cases when last-but
previous drm alone and both drm and 
GAI were involved. The level of estima
tion error is globally tower than it was in 
the previous cases. Its evolution stili pres
ents a minimum value for stage 3 and it 
decreases slightly for the last stage in the 
mixed dataset. 

Tab Ie 4. Relative mean squarc error of dry matter prediction based on simulated and observed values of GAI 

Dataset Predictors 

i=2 

Avignon GAI (i-1) 61.5 
(N=12) GAl(i-1) GAI (i-2) 

GAl(i-1~:!jAI (i-2) 
GAI (t-

Avignon GAI (i-1) 88.6 
Plus GAl(i-1) GAI (i-2) 
(N=15) GAl(i-1~:!jAI (i-2) 

GAI (t-

Avignon GAI (i-1) 65.6 
and Mons GAl(i-1) GAI (i-2) 

(N= 24) GAl(i-1~:!JAI (i-2) 
GAI (t-

Correction by GAI 

Table 4 shows that, when using GAI as 
a predictor, the error Ievel is comparable 
with the above situation for the mid-cycle 
stages in Avignon and Avignon Plus data
sets. Most of the time it is worse for the 
mixed Avignon-Mons dataset. Again, the 
time variation of error is not monotonie, 
and error is minimum during stage 3, which 

Relative error 

on dry matter prediction at stage i 

3 4 5 6 7 

13.9 18.6 73.1 97.2 98.6 
16.9 19.8 17.5 93.8 99.3 

14.0 20.3 57.8 99.5 

41.2 30.1 72.2 96.7 99.0 
89.8 26.0 24.4 97.3 99.6 

44.5 32.6 65.8 100.0 

44.9 97.6 98.6 82.1 74.6 
52.4 72.1 83.3 80.2 78.3 

71.4 63.8 78.5 76.8 

Optimal procedure 

From Tables 3 to 5, it appears that an 
optimal procedure can be found in order 
to correct current above-ground-matter 
with minimum error, according to the 
stage where the correction should be done. 
For stages 2 to 6, the use of drm and GAI 
(Table 5) leads to better performances. 
For stage 7, drm alone (Table 3) is a better 
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Tab Ie S. Rclative mean square error of dry mattcr prediction based on simulatcd and obeerved valucs of dry 
matter and GAI 

Datasct Predictors 

i=2 

Aw,non dnn(i-1) GAI (i-1) 84.6 
( =12) drm (i-lj S7A1(i-1) 

d (i-'i 
drm {f-1) S7AI (i-1) 

drm (i-'i , GAl(i-2) 

Avignon drm(i-1) GAI (i-1) 422 
Plus drm (i-lj ~Al(i-1) 
(N=15) d (i-'i 

drm <f-1) S7A1 (i-1) 
drm (i-'i GAI (i-Z) 

' 
Avignon drm(i-1) GAI (i-1) 57.1 
and drm (i-lj S7Al(i-l) 
Mons d (i-'2 
(N=24) drm <f-1) S7AI (i-1) 

drm (i-'i GAI (i-2) 
' 

corrector. We can therefore use the best 
predictors for each stage (Table 5: predicted 
by t1nn(i-l),GA1(i-l); predicted by tJnn(i-l), 

GAl(i-l), tJnn(i-2); predicted by tJnn(i-l), 

GAl(i-1), tJnn(i-2), GAl(i-2)) in terms of 
relative mean square error of prediction for 
the three datasets. It appears that, for both 
Avignon datasets, the error may be kept low 
during the phase of linear dnn evolution, 
but it increases for the last stages (Table 5: 
predicted by tJnn(i-l), GAl(i-l); predicted by 
tJnn(i-1), GAl(i-1), tJnn(i-2)).With the multi
local dataset, the average error level is 
higher, but almost constant whatever the 
stage (Table 5: predicted by tfnn(i-1), G.Af(i·1), 
drm(i-2), GAl(i-2J). . 

DISCUSSION AND CONCLUSIONS 

Using the method described above, the 
introduction of interrnediate data allows us 
to correct the values of above-ground dry 
matter simulated by the AFRCWHEAT 
model. With our highly heterogeneous da
tasets, the level of improvement largely de
pends on predictor and stage, ranging from 
12 to 100 percent of error level performed 
by the model alone and it is usually less for 

Relative error 

on dry mattcr prediction at atagc 

3 4 5 6 7 

12.9 13.9 18.7 54.6 71.4 
22.5 17.4 20.3 64.6 98.9 

129 23.2 15.4 61.4 100.0 

13.1 2S.O 39.8 58.4 74.2 
17.6 27.7 30.3 76.1 95.7 

33.7 30.2 18.7 71-.4 100.0 

45.7 64.6 50.6 60.0 52.9 
52.7 67.3 54.9 69.9 56.1 

48.6 75.4 54.8 74.6 59.1 

interrnediate phases. This variation suggests 
that the linear correction model used by our 
method is not adequate for some phases of 
dry matter evolution (namely the phases 
where dry matter accumulation, rate changes 
rapidly). This is particulary true when GAI 
differences are used as predictors, because 
the evolution of GAI is not monotonie with 
dry matter. 

An optimal choice of correction accord
ing to phases allows to minimize the global 
estimation error, showing a strongly non-li
near pattern of relative error evolution for 
the one-site model (Table 5: predicted by 
t1nn<i-1) GAJ<i-1). precticted t,yt1nn<i-1) GAJ<i-1) ' ' , , 
d,m(i-2)) and a relatively stable one for the 1\\0 

sites (fabie 5: predicted by dnn(i-1), GAICi·1>, 
tfnn(i-2), GAl(i-2)). It should neverthel~ be 

noticed that these relative values correspond 
to higher levels of absolute error in the case 
of two sites. In any case, the use of cr~-vali
dation prevents this estimated error from 
being too optimistic. Improvements may be 
achieved by using a non-linear correction 
technique, for instance approximation by 
polynomial functions. 
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Results could probably be better if the 
time axis, which is currently split into classes 
of equal duration, was replaced by a more 
biological criterion, like classes of equal 
.thermal duration or possibly phenological 
phases. Given such improvements, this 
method can be used to forecast finał above
ground dry matter from GAI alone, pro
vided future weather values are simulated 
from current date to maturity. A major ap
plication could be to use estimations of 
crop state variables derived from satellite 
information in order to provide loca) cor
rections to areał simulations performed by a 
crop model (theoretically valid over the va
lidity domain of the weather factors and soil 
maps that are used as inputs). Should 'fu
ture' weather data be simulated, one can es
timate crop finał dry matter (or finał yicld) 
by oombining model simulations and radiome
trie data observed from sowing to some 'pre
sent' time in the crop cycle. In this case, 
however, as drm estimations by vegetation 
indices are not reliable (1), only GAI can be 
used (5,7). As, in our study, GAI was the 
less efficient predictor, the above men
tioned improvements to the method would 
likely be essential to obtain acceptable error 
levels. 
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LINIOWA KOREKCJA MODELU 
DYNAMICZNEGO PLONU BIOMASY 

W OPARCIU O WYNIKI SYMULACYJNE 
I OBSERWACJE POLOWE 

W pracy pl'l.edstawiono metodę liniowych korek
cji wartOM:i suchej masy pszenicy, symulowanej przy po
mocy modelu AFRCWHEAT, w oparciu o obserwacje 
polowe. Metoda istotnie wykonystuje wartOM:i suchej 
masy (drm) oraz powierzchni zielonej rn'lin (GAI) ob
serwowanych we wcześniejszych f81.8ch bie-żącej wege
tacji, analizowanych na tle danych wieloletnich. Metodę 
testowano na 3 zbiorach danych d~adczalnych psze
nicy, otrzymanych dla dwóch stacji eksperymentalnych 
Instytutu I.N.RA (Mons - Północna Francja oraz Awi
nion - Południowa Francja) o zróżnicowanych warun
kach klimatycznych, dla różnych odmian i agrotechniki. 
Testy weryfikacyjne (CV • LOO) wykazały znaczną re
dukcję błędu śrcdniokwadratowego (nawet do 12 % 
błędu modelu) w zależności od terminu wykonania ko
rekcji oraz użytych zmiennych. W pracy zawarto row
nież sugestie wykorzystania obserwacji satelitarnych. 


