PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 58 | 3 |

Tytuł artykułu

Bioavailability of calcium and phosphorus from diets containing white cheeses supplemented with prebiotics in rats

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
The intake of food products containing prebiotics has a beneficial effect on the functioning of the gastrointestinal tract and may also contribute to increased mineral absorption from a diet. In the food industry prebiotics (inulins and maltodextrins) are also used because of their functional properties such as stabilizing emulsions. A study was undertaken to investigate the effect of inulin HPX and maltodextrin, applied in the production of white soft cheese as stabilizers, at a dose of 2.5%, on the bioavailability of calcium and phosphorus in rats. In the study, Wistar rats (n = 6 per group) were fed diets composed of cheese without prebiotic (control) or cheeses containing either 2.5% of inulin or maltodextrin, for 10 days. The bioavailability of the minerals was expressed by means of apparent absorption (A) and retention (R) coefficients (mg/5 days,%). The apparent Ca absorption and retention (mg/5 days) were the highest in the control group (p <0.05), whereas the A (%) and R (%) coefficients did not differ significantly between the groups. Also, the apparent absorption of P (mg/5 days) was the highest (p<0.05) in the control group and no differences in A (%), R (mg/5 days), R (%) coefficients were noted among the groups. Inulin HPX and maltodextrin used in white cheese production do not increase Ca nor P bioavailability, which suggests that the technologically-justified 2.5% dose is too low to exert a positive effect on mineral balance.

Wydawca

-

Rocznik

Tom

58

Numer

3

Opis fizyczny

p.383-387,ref.

Twórcy

  • University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1, 10-726 Olsztyn, Poland
autor

Bibliografia

  • 1. AOAC. Official Method of Analysis of the Association of Official Agricultural Chemists. Washington. DC. Association of Analytical Chemists. 1990, pp. 125–139.
  • 2. AOAC. Official Methods of Analysis. 12th ed. Washington D.C. Association of Official Analytical Chemists, 1975.
  • 3. Blaut M., Relationship of prebiotics and food to intestinal microflora. Eur. J. Nutr., 2002, 41, 11–16.
  • 4. Bosscher D., van Caillie–Bertrand M., van Cauwenbergh R., Deelstra H., Availabilities of calcium, iron and zinc from dairy infant formulas is affected by soluble dietary fibers and modified starch fractions. Nutrition, 2003, 19, 641–645.
  • 5. Coudray C., Feillet–Caudray C., Tressol J.C., Guex E., Thien S., Jaffrelo L., Mazur A., Rayssiguier Y., Stimulatory effect of inulin on intestinal absorption of calcium and magnesium in rats is modulated by dietary calcium intakes. Eur. J. Nutr., 2005, 44, 293–302.
  • 6. Crittenden R., Playne M.J., Production, properties and applications of food–grade oligosaccharides. Trends Food Sci. Tech., 1996, 7, 353–361.
  • 7. Dahl W., Whiting S., Isaak T., Weeks S., Arnold C., Effects of thickened beverages fortified with inulin on beverage acceptance, gastrointestinal function, bone resorption in institutionalized adults. Nutrition, 2005, 21, 308–311.
  • 8. Flamm G., Glinsmann W., Kritchevsky D., Prosky L., Roberfroid M., Inulin and oligofructose as dietary fiber, a review of the evidence. Crit. Rev. Food Sci., 2001, 41, 353–362.
  • 9. Fortuna T., Sobolewska I., Maltodextrins and their application to food production. Żywność, 2002, 23, 100–108 (in Polish).
  • 10. Griffin I.J., Hicks P.M.D., Heaney R.P., Abrams S.A., Enriched chicory inulin increases absorption mainly in girls with lower calcium absorption. Nutr. Res., 2003, 23, 901–909.
  • 11. Karczmarewicz E., Skorupa E., Lorenc R.S., The effect of pro– and prebiotics on calcium–phosphate homeostasis and bone metabolism. Pediatria Współczesna. Gastroenterologia, Hepatologia i Żywienie Dziecka, 2002, 4, 63–69 (in Polish).
  • 12. Kłobukowski J., Szpendowski J., Wilczewska J., Bioavailability of calcium and phosphorus from curd cheese by–products. Pol. J. Natur. Sci., 2004, Suppl. 2, 67–73.
  • 13. Krzyżaniak W., Olesienkiewicz A., Białas W., Słomińska L., Jankowski T., Grajek W., Chemical composition of maltodextrins of low dextrose equivalent obtained by potato starch hydrolysis using different alpha–amylases. Acta Sci. Pol., Technol. Aliment., 2003, 2, 5–15 (in Polish).
  • 14. Lobo A., Colli C., Filisetti T., Fructooligosaccharides improve bone mass and biomechanical properties in rats. Nutr. Res., 2006, 26, 413–420.
  • 15. Losada M.A., Olleros T., Towards a healthier diet for the colon, the influence of fructooligosaccharides and lactobacilli on intestinal health. Nutr. Res., 2002, 22, 71–84.
  • 16. NRC, National Research Council. Nutrient Requirement of Domestic Animals. Nutrient Requirements of Laboratory Animals. 10th ed. Washington D.C., National Academy of Science, 1978.
  • 17. Pérez–Conesa D., López G., Abellán P., Ros G., Bioavailability of calcium, magnesium and phosphorus in rats fed probiotic, prebiotic and synbiotic powder follow–up infant formulas and their effect on physiological and nutritional parameters. J. Sci. Food Agri., 2006, 86, 2327–2336.
  • 18. Powel M., Heaney R., Kalkwarf H., Pitkin R., Repke J., Tsang R., Schulkin J., The role of calcium in health and disease. Am. J. Obstet. Gynecol., 1999, 181, 1560–1569.
  • 19. Polish Standard PN–76R–64781. Phosphorus determination (in Polish).
  • 20. Roberfroid M., Cumps J., Devogelaer J.P., Dietary chicory inulin increases whole–body bone mineral density in growing male rats. J. Nutr., 2002, 132, 3599–3602.
  • 21. Roberfroid M., Chicory fructooligosaccharides and the gastrointestinal tract. Nutrition, 2000, 16, 677–679.
  • 22. Roberfroid M.B., Delzenne N.M., Dietary fructans. Ann. Rev. Nutr., 1998, 18, 117–143.
  • 23. Roberfroid M.B., van Loo J.A.E., Gibson G.R., The bifidogenic nature of chicory inulin and its hydrolysis products. J. Nutr., 1998, 128, 11–19.
  • 24. Scholz–Ahrens K.E., Schaafsma G., van den Heuvel E., Schrezenmeir J., Effects of prebiotics on mineral metabolism. Am. J. Clin. Nutr., 2001, 73, 459–464S.
  • 25. Śliżewska K., Libudzisz Z., Application of oligosaccharides as prebiotics. Przem. Spoż., 2002, 4, 10–12, 16 (in Polish).
  • 26. Voragen A.G.J., Technological aspects of functional food–related carbohydrates. Trends Food Sci. Tech., 1998, 9, 328–335.
  • 27. Whiteside P., Miner B., Atomic Absorption – Data Book. 1984, Cambridge, Pye Unicam Ltd..
  • 28. Winer B.J., Brown D.R., Michels KM., Statistical Principles in Experimental Designs. 1991, 3rd ed., McGraw–Hill, New York, p. 1057.
  • 29. Zafar T.A., Weaver C.M., Zhao Y., Martin B.R., Wastney M.E., Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats. J. Nutr., 2004, 134, 399–402.
  • 30. Zduńczyk Z., Probiotics and prebiotics, local and systemic effects. Przem. Spoż., 2002, 4, 6–8 (in Polish).
  • 31. Ziemer C.J., Gibson G.R., An overview of probiotics, prebiotics and synbiotics in the functional food concept, perspectives and future strategies. Int. Dairy J., 1998, 8, 473–479.

Identyfikator YADDA

bwmeta1.element.agro-article-4ed30bef-8c98-453a-b2c4-50143ced86c4