PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 52 | 1 |

Tytuł artykułu

Cell structural reorganization during induction of androgenesis in isolated microspore cultures of triticale [xTriticosecale Wittm.]

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Upon stress treatment, isolated microspores of triticale (×Triticosecale Wittm.) were directed towards sporophytic development (androgenesis). We used fluorescence microscopy to study the cell structural reorganization associated with the process. Changes in the developmental pathway coincided with the character of the microtubular cytoskeleton configuration, the number and direction of nuclear divisions, changes in vacuolization, the distribution of mitochondria, ER and starch grains, and the architecture of new cell wall formation. A band of diffused fluorescence surrounding the nucleus was observed before the first symmetric division of microspores. This structure most likely represents a preprophase band (PPB). Successive mitotic divisions within the microspore wall led to the formation of multinucleate or multicellular structures consisting of one or two domains of cells differing in size. They were later released from the sporoderm and continued further development with features typical for a monocotyledonous embryo. The pattern of internal architecture of androgenic structures depended on their developmental phase. Before and after release from the microspore wall, cortical microtubules (MTs) exhibited various configurations without preferential orientation. They formed a denser network in the region opposite to the sporoderm rupture site. Released multicellular structures showed both intensely fluorescing cortical MTs and more dispersed endoplasmic MTs radiating along the cytoplasmic strands from the nuclear region to the cell cortex. Up to globular stage, isotropically expanding cells of androgenic embryos showed a random pattern of MTs. This is the first report that successive events of androgenic development of triticale microspores are associated with MT reorganization. The results support the view that changes in cytoskeleton architecture are critical during induction of androgenesis.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

52

Numer

1

Opis fizyczny

p.73-86,fig.,ref.

Twórcy

autor
  • Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland
autor
autor
autor
autor

Bibliografia

  • BAJAJ YPS. 1990. In vitro production of haploids and their use in cell genetics and plant breeding. In: Bajaj YPS [ed.], Haploids in Crop Improvement I, 3–44. Biotechnology in Agriculture and Forestry. Springer-Verlag, Berlin.
  • BARNABAS B, PFAHLER PL and KOVACS G. 1991. Direct effect of colchicine on the microspore embryogenesis to produce dihaploid plants in wheat (Triticum aestivum L.). Theoretical and Applied Genetics 81: 675–678.
  • BENZIMAN M, HAIGLER CH, BROWN RM, WHITE AR and COOPER KM. 1980. Cellulose biogenesis. Polymerization and crystallization are coupled processes in Acetobacter xylinum. Proceedings of the National Academy of Sciences U.S.A. 77: 6678–6682.
  • BONET FJ, and OLMEDILLA A. 2000. Structural changes during early embryogenesis in wheat pollen. Protoplasma 211: 94–102.
  • BOUTILIER K, OFFRINGA R, and SHARMA VK. 2002. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryogenic growth. The Plant Cell 14: 1737–1749.
  • CORDEWENER JHG, BUSINK R, TRAAS JA, CUSTERS JBM, DONS HJM, and VAN LOOKEREN CAMPAGNE MM. 1994. Induction of microspore embryogenesis in Brassica napus L. is accompanied by specific changes in protein synthesis. Planta 195: 50–56.
  • CUSTERS JBM, CORDEWENER JHG, NOELLEN Y, DONS HJM, and VAN LOOKEREN CHAMPAGNE MM. 1994. Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant CellReports 13: 267 271.
  • EADY C, LINDSEY I, and TWELL D. 1995. The significance of microspore divisions and division symmetry for vegetative-cell specific transcription and generative cell differentiation.The Plant Cell 7: 65–74.
  • EUDES F, and AMUNDSEN E. 2005. Isolated microspore culture of Canadian 6× triticale cultivars. Plant Cell Tissue and Organ Culture 82: 233–241.
  • GARRIDO D, VICENTE O, HEBERLE-BORS E, and RODRIQUEZ-GARCIA MI. 1995. Cellular changes during the acquisition of embryogenic potential in isolated pollen grains of Nicotiana tabacum. Protoplasma 186: 220–230.
  • GERVAIS G, NEWCOMB W, and SIMMONDS DH. 2000. Rearrangement of the actin filament and microtubule cytoskeleton during induction of microspore embryogenesis in Brassica napus L. cv Topas. Protoplasma 213: 194–202.
  • GIDDINGS TH, and STAEHELIN LA. 1991. Microtubule mediated control of microtubule deposition: a re-examination of the hypothesis. In: Lloyd CW [ed.], The Cytoskeletal Basis of Plant Growth and Form, 85–100. Academic Press Inc., San Diego, Calif.
  • GODDARD RH, WICK SM, SILFLOW CD, and SNUSTAD DP. 1994. Microtubule components of the plant cell cytoskeleton. Plant Physiology 104:1–6.
  • GONZALES JM, and JOUVE N. 2005. Microspore development during in vitro androgenesis in triticale. BiologiaPlantarum 4 (1): 23–28.
  • HAUSE G, HAUSE B, and VAN LAMMEREN AAM. 1992. Microtubule and actin filament configuration during microspore and pollen development in Brassica napus cv. Topas. Canadial Journal of Botany 70: 1369–1376.
  • HAUSE B, HAUSE G, PECHAN P, and VAN LAMMEREN AAM. 1993. Cytoskeletal changes and induction of embryogenesis in microspore and pollen cultures of Brassica napus L. Cell Biology International 17 (2): 153–168.
  • HAUSE B, VAN VEENENDAAL WLH, HAUSE G, and VAN LAMMEREN AAM. 1994. Expression of polarity during early development of microspore-derived and zygotic embryos of Brassica napus L. cv. Topas. Botanica Acta 107 (6): 407–415.
  • HUANG B. 1986. Ultrastructural aspects of pollen embryogenesis in Hordeum, Triticum and Paeonia. In: Hu H and Hongyuan Y [eds.], Haploids of Higher Plants In Vitro, 91–117. Springer, Berlin, Heidelberg, New York.
  • INDRIANTO A, HERBELE-BORS E, and TOURAEV A. 1999. Assessment of various stresses and carbohydrates for their effect on the induction of embryogenesis in isolated wheat microspores. Plant Science 143(1): 71–79.
  • INDRIANTO A, BARINOVA I, TOURAEV A, and HERBELE-BORS E. 2001. Tracking individual wheat microspores in vitro: identification of embryogenic microspores and body axis formation in the embryo. Planta 212: 163–174.
  • KALLIONIEMI O.P. 1988. Comparison of fresh and paraffinembedded tissue as starting material for DNA flow cytometry and evaluation of intratumor heterogeneity. Cytometry 9: 164–169.
  • KASHA KJ, SIMION E, ORO R, and SHIM YS. 2003. Barley isolated microspore culture protocol. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I [eds.], Doubled Haploid Production in Crop Plants, 43–47. A Manual. Kluwer Acad. Publ., Dordrecht, Boston, London. 84 Dubas et al.
  • MAGNARD JL, LE DEUNFF E, DOMENECH J, ROGOWSKY PM, TESTILLANO PS, ROUGIER M, RISUEŃO MC, VERGNE P, and DUMAS C. 2000. Genes normally expressed in the endosperm are expressed at early stages of microspore embryogenesis in maize. Plant Molecular Biology 44:559–574.
  • DE MARASCHIN SF. 2005. Androgenic switch in barley microspores. Ph.D. dissertation, University of Leyden. Ridderprint, Ridderkerk, The Netherlands.
  • DE MARASCHIN SF, PRIESTER DE W, SPAINK HP and WANG M. 2005a. Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. Journal of Experimental Botany 56 (417): 1711–1726.
  • DEMARASCHIN SF, VENNIK M, LAMERS GEM, SPAINK HP and WANG M. 2005b. Time-lapse tracking of barley androgenesis reveals position-determined cell death within proembryos. Planta 220: 531–540.
  • DE MARASCHIN SF, GAUSSAND G, PULIDO A, OLMEDILLA A, LAMERS GEM, KORTHOUT H, SPAINK HP, and WANG M. 2005c. Programmed cell death during the transition from multicellular structures to globular embryos in barley androgenesis. Planta 221: 459–470.
  • MASSSONNEAU A, CORONADO MJ, AUDRAN A, BAGNIEWSKA A, MOL R, TESTILLANO PS, GORALSKI G, DUMAS CH, RISUEŃO MC, and MATTHYS-ROCHON E. 2005. Multicellular structures developing during maize microspore culture express endosperm and embryo-specific genes and show different embryogenic potentialities. European Journal of CellBiology 84: 663–675.
  • MORDHORST AP, TOONEN MAJ, and DE VRIES SC. 1997. Plant Embryogenesis. Critical Review. Plant Science 16: 535–576.
  • OBERT B, and BARNABAS B. 2004. Colchicine induced embryogenesis in maize. Plant Cell Tissue and Organ Culture 77: 283–285.
  • OBERT B, SZABO L, MITYKO J, PREOEOVA A, and BARNABAS B. 2005. Morphological events in cultures of mechanically isolated maize microspores. In Vitro Cellular and Developmental Biology – Plant 41: 775–782.
  • OLESZCZUK S, SOWA S, and ZIMNY J. 2004. Direct embryogenesis and green plant regeneration from isolated microspores of hexaploid triticale (xTriticosecale Wittmack) cv Bogo. Plant Cell Reports 22: 885–893.
  • PAUK J, PUOLIMATKA M, TOTH KL, and MONOSTORI T. 2000. In vitro androgenesis of triticale in isolated microspore culture. Plant Cell Tissue and Organ Culture 61: 221–229.
  • PAUK J, MHALY R, MONOSTORI T, and PUOLIMATKA M. 2003. Protocol for triticale (×Triticosecale Wittmack) microspore culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I [eds.], Doubled Haploid Production in Crop Plants. A Manual, 129–134. Kluwer Acad. Publ. Dordrecht, Boston, London.
  • PECHAN PM, and KELLER WA. 1988. Identification of potentially embryogenic microspores in Brassica napus. Physiologia Plantarum 74: 377–384.
  • PULIDO A, BAKOS F, CASTILLO A, VALLES MP, BARNABAS B, and OLMEDILLA A. 2005. Cytological and ultrastructural changes induced in anther and isolated-microspore cultures. Journal of Structural Biology 149: 170–181.
  • PULLI S, and GUO YD. 2003. Microspore culture of rye. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I [eds.], Doubled Haploid Production in Crop Plants. A Manual, 151–154. Kluwer Acad. Publ. Dordrecht, Boston, London.
  • RAINA SK, and IRFAN ST. 1998. High-frequency embryogenesis and plantlet regeneration from isolated microspores of indica rice. Plant Cell Reports 17 (12): 957–962.
  • RAMIREZ C, TESTILLANO PS, CASTILLO AM, VALLES MP, CORONADO MJ, CISTUE L, and RISUEŃO MC. 2001. The early microspore embryogenesis pathway in barley is accompaniedby concrete ultrastructural and expressionchanges. International Journal of Developmental Biology 45: 57–58.
  • REYNOLDS TL. 1997. Pollen embryogenesis. Plant Molecular Biology 33: 1–10.
  • SEAGULL RW. 1992. A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in vitro cotton fiber development.Journal of Cell Science 101: 561–577.
  • SIMMONDS DH. 1994. Mechanism of induction of microspore embryogenesis in Brassica napus; significance of the preprophase band of microtubules in the first sporophytic division. In: Akkas N [ed.], Biomechanics ofActive Movement and Division of Cells, 569–574. NATOASI series, vol. H 84. Springer, Berlin.
  • SIMMONDS DH, and KELLER WA. 1999. Significance of preprophase band of microtubules in the induction of microspores embryogenesis of Brassica napus. Planta.208: 383–391.
  • STAIGER CJ, BALUŠKA F, VOLKMANN D, and BARLOW P. 2000. Actin: A dynamic framework for multiple plant cell functions. In: Staiger CJ, Baluška F, Volkmann D, and Barlow P [eds.], 129–143. Kluwer Academic Publisher, Dordrecht, The Netherlands.
  • STOECKEL H, and TAKEDA K. 2002. Plasmalemmal voltage-activated K+ currents in protoplasts from tobacco BY-2 cells: possible regulation by actin microfilaments? Protoplasma 220: 79–87.
  • STRAIGHT AF, and FIELD CM. 2000. Microtubules, membranes and cytokinesis. Current Biology 10: 760–770.
  • SUNDERLAND N. 1973. Pollen and anther culture. In: Street HE [ed.], Plant Tissue and Cell Culture, 205–239. 1st ed., University of California Press, Berkeley.
  • SUPENA EDJ, WINARTO B, RIKSEN T, DUBAS E, VAN LAMMEREN A, OFFRINGA R, BOUTILIER K, and CUSTERS J. 2008. Regeneration of zygotic-like microspore-derived embryos suggests an important role for the suspensor in early embryo patterning. Journal of Experimental Botany 59(4): 803–814.
  • TELMER CA, NEWCOMB W, and SIMMONDS DH. 1993. Microspore development in Brassica napus and the effect of high temperature on division in vivo and in vitro. Protoplasma 172:154–165.
  • TELMER CA, NEWCOMB W, and SIMMONDS DH. 1995. Cellular changes during heat shock induction and embryo development of cultured microspores of Brassica napus cv. Topas. Protoplasma 185: 106–112.
  • TERASAKI M. 1994. Labeling of endoplasmic reticulum with DiOC6(3). In: Celis J [ed.], Cell Biology: A Laboratory Handbook, 381–386. Academic Press, Orlando.
  • TESTILLANO PS, RAMIREZ C, DOMENECH J, CORONADO MJ, VERGNE P, MATTHYS-ROCHON E, and RISUEŃO MC. 2002. Young microspore derived maize embryos show two domainswith defined features also present in zygotic embryogen-esis. International Journal of Developmental Biology46: 1035– 1047.
  • TOURAEV A, ILHAM A, VICENTE O, and HEBERLE-BORS E. 1996a. Stress as the major signal controlling the developmental of tobacco microspores: towards a unified model of induction of microspore/pollen embryogenesis. Planta 200: 144–152.
  • TOURAEV A, ILHAM A, VICENTE O, and HEBERLE-BORS E. 1996b. Stress-induced microspore embryogenesis in tobacco: an optimized system for molecular studies. Plant CellReports 15: 561–565.
  • TOURAEV A, VICENTE O, and HEBERLE-BORS E. 1997. Initiation of embryogenesis by stress. Trends Plant Science 2: 297–302.
  • TOURAEV A, TASHPULATOV A, INDRIANTO A, BARINOVA J, KATHOLNIGG H, AKIMCHEVA S, RIBARITS A, VORONIN V, ZHEXSEMBEKOVA M, and HEBERLE-BORS E. 2000. Fundamentalaspects of microspore embryogenesis. In: Proceedings ofthe COST Action 824, 'Biotechnological approaches forutilization of gametic cells' Bled, 1–5 July 2000,205–214.
  • VAN LAMMEREN AAM, KEIZER CJ, WILLEMSE MTM, and KIEFT H. 1985. Structure and function of microtubular cytoskeleton during pollen development in Gasteria verrucosa (Mill.) H. Duval. Planta 165: 1–11.
  • VERMA DPS. 2001. Cytokinesis and building of the cell plate in plants. Annual Review of Plant Physiology and Plant Molecular Biology 52: 751–784.
  • VITHA S, BALUŠKA F, JASIK J, VOLKMANN D, and BARLOW P. 2000. Steedman's wax for F-actin visualization. In:. Steiger CJ, Baluska F, Volkmann D, Barlow PW [eds.], Actin: A Dynamic Framework for Multiple Plant CellFunctions, 619–636. Kluwer Academic Publishers,Dordrecht, The Netherlands.
  • VOLKMANN D, and BALUŠKA F. 1999. Actin cytoskeleton in plants: from transport networks to signaling networks. Microscopy Research and Technique 47:135–154.
  • WASTENEYS GO. 2002. Microtubule organization in the green kingdom: chaos or self order? Journal of Cell Science 115:1345–1354.
  • WEBB MC, and GUNNING BES. 1991. The microtubular cytoskeleton during development of the zygote, proembryo and free-nuclear endosperm in Arabidopsis thaliana (L.) Heynh. Planta 184: 187–195.
  • WEDZONY M. 2003. Protocol for anther culture in hexaploid triticale (×Triticosecale Wittm.). In: Małuszynski et al. [eds.], Doubled Haploid Production in Crop Plants – A Manual, 123–128. Kluwer Acad. Publ., Dordrecht,Boston, London.
  • ZAKI MAM, and DICKINSON HG. 1990. Structural changes during the first divisions of embryos resulting from anther and free microspore culture in Brassica napus.Protoplasma 156: 149–162.
  • ZAKI MAM, and DICKINSON HG. 1991. Microspore-derived embryos in Brassica: the significance of the division symmetry in pollen mitosis I to embryogenic development.Sexual Plant Reproduction 4: 48–55.
  • ZHAO JP, SIMMONDS DH, and NEWCOMB W. 1996. Induction of embryogenesis with colchicine instead of heat in microspores of Brassica napus L. cv Topas. Planta 189: 433–439.
  • ZHENG MY, LIU W, WENG Y, POLLE E, and KONZAK CF. 2003. Production of doubled haploids in wheat (Triticum aestivum L.) through microspore embryogenesis triggered by inducer chemicals. In: Maluszynski M, Kasha KJ,Forster BP, Szarejko I [eds.], Doubled Haploid Production in Crop Plants. A Manual, 83–94. KluwerAcad. Publ., Dordrecht, Boston, London.
  • ZHUANG JJ, and XU JIA. 1983. Increasing differentiation frequencies in wheat pollen callus. In: HU H and Vega MR [eds.], Cell and Tissue Culture Techniques for Cereal Crop Improvement, 431. Science Press, Beijing.
  • ZORINIANTS S, TASHPULATOV AS, HEBERLE-BORS E and TOURAEV A. 2005. The role of stress in the induction of haploid microspore embryogenesis. In: Palmer CE, Keller WA,Kasha KJ. [eds.], Biotechnology in Agriculture andForestry, vol. 56. Haploids in crop improvement II,35–52. Springer-Verlag, Berlin.
  • ZUR I, DUBAS E, GOLEMIEC E, SZECHYŃSKA-HEBDA M, JANOWIAK F, and WEDZONY M. 2008. Stress-induced changes important for effective androgenic induction in isolatedicrospore culture of triticale (×Triticosecale Wittm.).Plant Cell, Tissue and Organ Culture 94: 319–328.
  • ZUR I, DUBAS E, GOLEMIEC E, SZECHYŃSKA-HEBDA M, GOLEBIOWSKA G, and WEDZONY M. 2009. Stress-related variation inantioxidative enzymes activity and cell metabolism efficiencyassociated with embryogenesis induction in isolatedmicrospore culture of triticale (×TriticosecaleWittm.). Plant Cell Reports 28: 1279–1287.86 Dubas et al.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-4dce3151-61f6-4076-8715-36ef27291bf2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.