INFLUENCE OF MINERAL SALTS UPON ACTIVITY OF TRICHODERMA HARZIANUM NON-VOLATILE METABOLITES ON ARMILLARIA SPP. RHIZOMORPHS

KRYSYNA PRZYBYL1, MALGORZATA MAŃKA2

1 Polisch Academy of Sciences, Institute of Dendrology
Parkowa 5, 62-035 Kórnik, Poland
e-mail: kmtprz@man.poznan.pl

2 August Cieszkowski University of Agriculture, Department of Forest Pathology
Wojska Polskiego 71C, 60-625 Poznań, Poland

(Received: February 9, 2004. Accepted: August 31, 2004)

ABSTRACT

Effect of non-volatile metabolites of Trichoderma harzianum together with certain salts containing Mg**, Fe**, Mn**, Cu**, Al**, Ca**, Na+, PO4~3 and SO4~2 on the production and length of rhizomorphs of Armillaria borealis, A. gallica and A. ostoyae was studied. In pure medium, T. harzianum exhibited stimulating effect on rhizomorphs of A. borealis (both number and length) and A. ostoyae (only initiation).

Cu** salt totally inhibited the initiation of rhizomorphs of Armillaria borealis, A. gallica and A. ostoyae. Effect of other compounds on the activity of T. harzianum depended on Armillaria species. The majority of chemical compounds tested supressed the activity of non-volatile metabolites of T. harzianum. Evident stimulating effect was observed under influence of sulphate salts consisting Al** and Fe** on the rhizomorph number of A. borealis and A. gallica, respectively.

KEY WORDS: rhizomorphs, Armillaria borealis, Armillaria gallica, Armillaria ostoyae, Trichoderma harzianum, mineral salts.

INTRODUCTION

Root rot caused by Armillaria species is a common and severe disease of coniferous and deciduous trees (Rykowski 1981; Rishbeth 1988; Termorshuizen and Arnold 1994; Rosso and Hansen 1998; Przybyl 1999; Żółciak 1999; Selochnik and Kondrashova 2002; Thomas et al. 2002).

Rhizomorphs of Armillaria spp. play a major role in both the infection and spread of the disease, however, spore infection and root contacts are also considered in both processes (Rishbeth 1988). Distribution of Armillaria spp. and growth of rhizomorphs depend on many environmental factors, from which the effect of several soil factors, e.g. pH, moisture and organic matter on rhizomorph initiation and growth were most often emphasized (Rishbeth 1978; Rykowski 1981; Pritam 1983; Twery et al. 1990; Shaw and Kile 1991; Marçais and Wargo 2000).

Some authors claim that suppression or stimulation of Armillaria spp. and other many pathogenic fungi is connected with metabolites produced by soil microorganisms, e.g. Trichoderma spp. (mainly T. harzianum Rifai and T. viride Pers. et Gray), Aureobasidium pullulans (de Bary) Arn. and Zygorrhynchos moelleri Vuill. (Pentland 1965; Kelly 1976; Harrison and Stewart 1988; Anselmi et al. 1992; Fox et al. 1994; Gallet and Lung-Escarant 1994; Kwaśna and Łakomy 1998; Languasco et al. 2001). To our knowledge there is very little information available in the literature on the effect of inorganic compounds in pathogen-microorganism interaction.

The aim of our study reported here was to establish the in vitro effect of non-volatile metabolites of Trichoderma harzianum grown on medium with some mineral salts on production (expressed in their number) and growth (expressed in their length) of rhizomorphs of A. ostoyae (Romag.) Herink, A. borealis Marx. et Korh. and A. gallica Marx. et Romag.

MATERIALS AND METHODS

Fungal material

Isolates of Armillaria spp. were obtained from roots showing distinct decay symptoms, of the following tree species: Quercus robur L. (A. borealis and A. gallica) and Picea abies Karst. (A. ostoyae). Trichoderma harzianum belonged to fungi which were also detected in roots affected by Armillaria spp. The isolation of fungi and identification
procedure of *Armillaria* spp. described by Korhonen (1978) and Przybyl (1999) was used, respectively.

The cultures were stored ca. 12 months on 3.5% malt extract agar (MEA; Merck, pH 5.3) at +3°C before the study. They were transferred onto fresh MEA and then incubated in the dark at 23-24°C. All studied isolates of *Armillaria* species were able to form rhizomorphs under these conditions.

In the preliminary study, the non-volatile metabolites of three *T. harzianum* isolates were tested on MEA. They exhibited significant stimulating effect on rhizomorphs of *A. borealis* (both number and length) and *A. ostoyae* (number). In the case of *A. gallica* the effect was not visible in comparison with control data (results are included in Tables 1, 2 and 3). The difference in effect of the *Trichoderma* isolates on the formation and length of rhizomorphs was not significant. Therefore only one isolate was randomly selected for further studies.

Effect of chemical compounds – experiment 1

(MEA + C)

The following chemical compounds were applied: Mg – MgSO₄ × 7H₂O, Fe – Fe₂(SO₄)₃ × 7H₂O, Mn – MnSO₄ × 5H₂O, Cu – CuSO₄ × 5H₂O, Al – Al₂(SO₄)₃, Ca – CaCl₂, K – KCl, P – KH₂PO₄, Na – NaCl, S – Na₂SO₄ and K₂SO₄ (Ważny 1963; Sierota 1983). Mineral salts solutions at concentration 100 ppm of examined compounds were passed individually through 0.22 µm Millipore (Bedford, MA) filter and then separately added into sterile MEA. The pH of media were adjusted to 5.3 with 0.1 N NaOH or HCl using the Microcomputer pH-meter Cp-315 (Dhingara and Sinclair 1986).

Medium plugs of three isolates of each *Armillaria* species measuring approximately 5 mm by 5 mm were placed in the centre of a Petri dishes containing MEA with individual mineral salts. Seven replications were made for each isolate. Cultures were then incubated at 23°C. The average number of rhizomorphs and their mean length were measured after 26 days. In the second case the length of all rhizomorphs was calculated per one rhizomorph for each culture.

Effect of non-volatile metabolites of *T. harzianum* – experiment 2

Non-volatile metabolites produced by *T. harzianum* were tested using the procedure described by Dennis and Webster (1971) and Rudawska et al. (1993). The fungus was grown from its inoculum disk over the surface of cellophane membrane laid on pure MEA (MEA + T) and on MEA containing separately added salts (MEA + T + C).

Metabolites produced by *T. harzianum* were allowed to diffuse through the cellophane into medium. Plug mycelium (ca 5 × 5 mm) of *Armillaria* sp. was placed onto middle of each medium 6 days after the removal of the cellophane with *T. harzianum*. Mycelium of the *Armillaria* sp. was cut from colonies after 24 days of incubation on MEA at 23-24°C. The activity of metabolites was assessed by measuring the number and length of rhizomorphs after 26 days in the same way as in experiment 1. Seven replications for each isolate were performed.
TABLE 3. Effect of some chemical compounds and Trichoderma harzia-
num on production and length of Armillaria ostoyae rhizomorphs.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Number of rhizomorphs (averages)</th>
<th>Length of rhizomorphs (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEA</td>
<td>3.6 abc</td>
<td>2.2 abc</td>
</tr>
<tr>
<td>MEA + T</td>
<td>10.4 de</td>
<td>9.6 c</td>
</tr>
<tr>
<td>(1) Cupric sulphate (CuSO₄x5H₂O)</td>
<td>0.0 a</td>
<td>0.0 a</td>
</tr>
<tr>
<td>Cupric sulphate + T</td>
<td>0.0 a</td>
<td>0.0 a</td>
</tr>
<tr>
<td>(2) Potassium sulphite (K₂SO₄)</td>
<td>5.1 bcd</td>
<td>4.6 abc</td>
</tr>
<tr>
<td>Potassium sulphite + T</td>
<td>2.6 abc</td>
<td>9.6 c</td>
</tr>
<tr>
<td>(3) Manganese sulphate (MnSO₄x5H₂O)</td>
<td>2.0 abc</td>
<td>4.0 abc</td>
</tr>
<tr>
<td>Manganese sulphate + T</td>
<td>4.0 abcd</td>
<td>2.5 bc</td>
</tr>
<tr>
<td>(4) Magnesium sulphate (MgSO₄x5H₂O)</td>
<td>1.7 abc</td>
<td>3.5 abc</td>
</tr>
<tr>
<td>Magnesium sulphate + T</td>
<td>12.0 e</td>
<td>11.8 c</td>
</tr>
<tr>
<td>(5) Aluminium sulphate (Al₂SO₄)</td>
<td>3.6 abc</td>
<td>3.6 abc</td>
</tr>
<tr>
<td>Aluminium sulphate + T</td>
<td>11.0 de</td>
<td>4.5 abc</td>
</tr>
<tr>
<td>(6) Ferrous sulphate (Fe₂(SO₄)₃x7H₂O)</td>
<td>0.5 ab</td>
<td>1.0 ab</td>
</tr>
<tr>
<td>Ferrous sulphate + T</td>
<td>1.3 abc</td>
<td>3.6 abc</td>
</tr>
<tr>
<td>(7) Potassium hypophosphite (KH₂PO₄)</td>
<td>3.2 ab</td>
<td>2.2 abc</td>
</tr>
<tr>
<td>Potassium hypophosphite + T</td>
<td>4.6 bcd</td>
<td>2.7 bc</td>
</tr>
<tr>
<td>(8) Potassium chloride (KCl)</td>
<td>6.2 cde</td>
<td>5.4 abc</td>
</tr>
<tr>
<td>Potassium chloride + T</td>
<td>9.6 de</td>
<td>4.6 abc</td>
</tr>
<tr>
<td>(9) Sodium sulphite (Na₂SO₄)</td>
<td>6.7 cde</td>
<td>6.1 abc</td>
</tr>
<tr>
<td>Sodium sulphite + T</td>
<td>2.7 abc</td>
<td>6.0 abc</td>
</tr>
<tr>
<td>(10) Sodium chloride (NaCl)</td>
<td>3.1 abc</td>
<td>2.2 abc</td>
</tr>
<tr>
<td>Sodium chloride + T</td>
<td>2.6 abc</td>
<td>2.7 abc</td>
</tr>
<tr>
<td>(11) Calcium chloride (CaCl₂)</td>
<td>3.6 abcd</td>
<td>6.9 bc</td>
</tr>
<tr>
<td>Calcium chloride + T</td>
<td>5.0 bcd</td>
<td>4.7 bc</td>
</tr>
</tbody>
</table>

Data followed by the same letters do not differ significantly (p=0.05) with Duncan test

MEAs – Malt extract agar; T – Trichoderma harzianum
Mineral salts were composed of: (1) – Cu, (2) – S, (3) – Mn, (4) – Mg, (5) – Al, (6) – Fe, (7) – P, (8) – K, (9) – S, (10) – Na, (11) – Ca

Duncan’s multiple range test (at a 5% of significance level) was used to compare the means for all final data obtained in both experiments.

RESULTS

Number of rhizomorphs

Full inhibition of rhizomorph initiation of Armillaria species were observed in the medium containing Cu⁺⁺ (CuSO₄) both without and with effect of T. harzianum metabolites.

Significantly greater number of A. borealis and A. gallica rhizomorphs occurred in the presence of T. harzianum together with Al⁺⁺ and Fe⁺⁺ (MEA + T + C; 33.3 and 45.6, respectively) in comparison with the number produced both on control media MEA + T and at MEA + C (Tables 1 and 2). The strong stimulating effect of T. harzianum metabolites together with the tested chemical compounds was not observed in the case of A. ostoyae rhizomorphs (Table 3). In this case the highest number of rhizomorphs (12.0) was found on medium containing Trichoderma metabolites together with Mg⁺⁺ (MgSO₄), but was not significantly differed from MEA+T. Whereas data relating to Mg⁺⁺ effect, and also to Al⁺⁺⁺ (MEA + C + T) differed significantly from data obtained for cultures growing on MEA + C. Moreover statistic analysis revealed a significant inhibiting effect on rhizomorph number on media (MEA + T + C) containing Fe⁺⁺⁺ (1.3), Na⁺ (2.6) and SO₄⁻² in the form of both K₂SO₄ (2.6) and Na₂SO₄ (2.7) in comparison with the data obtained for MEA + T (Table 3).

Length of rhizomorphs

It should be emphasised that Mn⁺⁺, PO₄⁻² and SO₄⁻² added to the medium alone, (without Trichoderma, MEA + C), significantly inhibited length of A. borealis rhizomorphs in pure medium (MEA; Table 1). A similar effect was obtained for A. gallica rhizomorphs being under influence of all individually tested compounds (Table 2).

Trichoderma effect on A. borealis rhizomorph length was inhibited by all individually investigated compounds (media MEA + C + T) when the data were compared with those obtained for cultures growing in MEA + T. On the other hand metabolites activity significantly increased under influence of Mg⁺⁺ (10.2) and SO₄⁻² (K₂SO₄ – 6.8, Na₂SO₄ – 7.3) (media MEA + T + C) in comparison with the activity in MEA + C (Table 1). In the A. gallica, inhibition of the metabolites activity was not noted in medium containing Mg⁺⁺ (MEA + T + C – 24.6 mm) in comparison with MEA + T (25.4 mm). For majority of other compounds the significant effect of Trichoderma (MEA + T + C) occurred when it was compared with data obtained on medium MEA + C (Table 2). In the case of A. ostoyae no clear effect on the length of rhizomorphs was observed (Table 3).

DISCUSSION

In the opinion of Morrison (1982) larger number of initials and a faster growth rate of rhizomorphs of A. mellea is due to organic carbon and nitrogen present in the soil. Whereas Przybyl (1998) found that sterilized soil rich in N, P, K, Ca and Mg more positively effected the initiation and length of rhizomorphs of A. ostoyae in comparison with A. borealis and A. gallica.

The results presented show, that CuSO₄ (containing 100 ppm Cu⁺⁺) inhibited the initiation of rhizomorphs of Armillaria borealis, A. gallica and A. ostoyae. The effect of other tested compounds on the activity of T. harzianum expressed in number and length of rhizomorphs was dependent on Armillaria species. Generally, the majority of tested chemical compounds supressed activity of non-volatile metabolites of T. harzianum in comparison with results obtained in pure MEA + T. Stimulation of T. harzianum activity was observed under influence of sulphate salts consisting Al⁺⁺ and Fe⁺⁺ on the rhizomorph number of A. borealis and A. gallica, respectively. On the other hand Fe⁺⁺⁺ inhibited effect of T. harzianum on formation of A. ostoyae rhizomorphs. Fe⁺⁺⁺ salt, used in the study, is able to inhibit antagonistic activity of certain fungi, e.g. Phlebiopsis gigantea toward Heterobasidion annosum (Negrutskiy et al. 1998). It is also proper to add that Mg, Mn and Zn ions at a concentration of 100 ppm increased the inhibitory effect of filtrates from T. viride cultures on H. annosum (Sierota 1983).

The authors are aware that the investigations presented, regarding only non-volatile metabolites, do not present an total effect of T. harzianum on rhizomorphs of tested Armillaria spp. In general, T. harzianum and other Trichoderma spp. can act by activity of their non-volatile and volatile metabolites. Variation within T. harzianum isolates with
regard to production of these metabolites was found by Dennis and Webster (1971); Harrison and Stewart (1988) and Rudawska et al. (1993). Moreover, mycopathasis of *T. harzianum* on rhizomorphs of *A. gallica* was reported by Dumas and Boyonoski (1992). Undoubtedly, the activity of *Trichoderma* spp. by all the possible means can explain the antagonistic effect of *T. harzianum* against *Amillaria* species which was proved by Fox et al. (1994) and Languasco et al. (2001). On the other hand, Mughoglo (1967, 1968, after Denis and Webster 1971) observed that isolates of *T. harzianum* did not affect the growth of *A. mellea* in vitro (in this case the complex of *A. mellea* was studied).

The results obtained for interaction of certain inorganic compounds with the pathogen and other microorganism (*T. harzianum*) provide encouragement for further studies on this subject. Different concentrations of inorganic compounds should also be analysed.

ACKNOWLEDGEMENTS

This work was partially conducted within the project supported by the Central Board of State Forests in Warsaw and by the Institute of Dendrology, Polish Academy of Sciences. The authors thank M. Wójkiewicz and M. Miłojczyk for technical assistance.

LITERATURE CITED

