PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 54 | 3 |

Tytuł artykułu

Bacterial DNA repair genesn and their eukaryotic homologues: 4. The role of nucleotide excision DNA repair [NER] system in mammalian cells

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The eukaryotic cell encounters more than one million various kinds of DNA lesions per day. The nucleotide excision repair (NER) pathway is one of the most important repair mechanisms that removes a wide spectrum of different DNA lesions. NER operates through two sub pathways: global genome repair (GGR) and transcription-coupled repair (TCR). GGR repairs the DNA damage throughout the entire genome and is initiated by the HR23B/XPC complex, while the CSB protein-governed TCR process removes DNA lesions from the actively transcribed strand. The sequence of events and the role of particular NER proteins are currently being extensively discussed. NER proteins also participate in other cellular processes like replication, transcription, chromatin maintenance and protein turnover. Defects in NER underlay severe genetic disorders: xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD).

Wydawca

-

Rocznik

Tom

54

Numer

3

Opis fizyczny

p.469-482,fig.,ref.

Twórcy

autor
  • Polish Academy of Sciences, A.Pawinskiego 5a, 01-106 Warsaw, Poland
autor
autor

Bibliografia

  • Aboussekhra A, Biggerstaff M, Shivji MK, Vilpo JA, Moncollin V, Podust VN, Protic M, Hubscher U, Egly JM, Wood RD (1995) Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80: 859–868.
  • Andressoo JO, Hoeijmakers JH, Mitchell JR (2006) Nucleotide excision repair disorders and the balance between cancer and aging. Cell Cycle 5: 2886–2888.
  • Arczewska K, Kusmierek J (2007) Bacterial DNA repair genes and their eukaryotic homologues: 2. Role of bacterial mutator gene homologues in human disease. Overview of nucleotide pool sanitization and mismatch repair systems. Acta Biochim Polon 54: 435–457.
  • Batty DP, Wood RD (2000) Damage recognition in nucleotide excision repair of DNA. Gene 241: 193–204.
  • Bessho T, Sancar A, Thompson LH, Thelen MP (1997) Reconstitution of human excision nuclease with recombinant XPF-ERCC1 complex. J Biol Chem 272: 3833–3837.
  • Bohr VA, Smith CA, Okumoto DS, Hanawalt PC (1985) DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40: 359–369.
  • Bregman DB, Halaban R, van Gool AJ, Henning KA, Friedberg EC, Warren SL (1996) UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc Natl Acad Sci USA 93: 11586–11590.
  • Brooks PJ (2007) The case for 8,5’-cyclopurine-2’-deoxynucleosides as endogenous DNA lesions that cause neurodegeneration in xeroderma pigmentosum. Neuroscience 145: 1407–1417.
  • Buchko GW, Isern NG, Spicer LD, Kennedy MA (2001) Human nucleotide excision repair protein XPA: NMR spectroscopic studies of an XPA fragment containing the ERCC1-binding region and the minimal DNA-binding domain (M59–F219). Mutat Res 486: 1–10.
  • Budd ME, Campbell JL (1997) The roles of the eukaryotic DNA polymerases in DNA repair synthesis. Mutat Res 384: 157–167.
  • Bunz F, Kobayashi R, Stillman B (1993) cDNAs encoding the large subunit of human replication factor C. Proc Natl Acad Sci USA 90: 11014–11018.
  • Burgers PM (1991) Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases delta and epsilon. J Biol Chem 266: 22698–22706.
  • Choi YJ, Ryu KS, Ko YM, Chae YK, Pelton JG, Wemmer DE, Choi BS (2005) Biophysical characterization of the interaction domains and mapping of the contact residues in the XPF-ERCC1 complex. J Biol Chem 280: 28644–28652.
  • Cloud KG, Shen B, Strniste GF, Park MS (1995) XPG protein has a structure-specific endonuclease activity. Mutat Res 347: 55–60.
  • Coin F, Egly JM (1998) Ten years of TFIIH. Cold Spring Harb Symp Quant Biol 63: 105–110.
  • Coin F, Oksenych V, Egly JM (2007) Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol Cell 26: 245–256.
  • Costa RM, Chigancas V, Galhardo Rda S, Carvalho H, Menck CF (2003) The eukaryotic nucleotide excision repair pathway. Biochimie 85: 1083–1099.
  • Cullmann G, Fien K, Kobayashi R, Stillman B (1995) Characterization of the five replication factor C genes of Saccharomyces cerevisiae. Mol Cell Biol 15: 4661–4671.
  • Daughdrill GW, Buchko GW, Botuyan MV, Arrowsmith C, Wold MS, Kennedy MA, Lowry DF (2003) Chemical shift changes provide evidence for overlapping singlestranded DNA- and XPA-binding sites on the 70 kDa subunit of human replication protein A. Nucleic Acids Res 31: 4176–4183.
  • de Laat WL, Appeldoorn E, Sugasawa K, Weterings E, Jaspers NG, Hoeijmakers JH (1998) DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev 12: 2598–2609.
  • de Laat WL, Jaspers NG, Hoeijmakers JH (1999) Molecular mechanism of nucleotide excision repair. Genes Dev 13: 768–785.
  • Drapkin R, Reardon JT, Ansari A, Huang JC, Zawel L, Ahn K, Sancar A, Reinberg D (1994) Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature 368: 769–772.
  • Dubaele S, Proietti De Santis L, Bienstock RJ, Keriel A, Stefanini M, Van Houten B, Egly JM (2003) Basal transcription defect discriminates between xeroderma pigmentosum and trichothiodystrophy in XPD patients. Mol Cell 11: 1635–1646.
  • Dunand-Sauthier I, Hohl M, Thorel F, Jaquier-Gubler P, Clarkson SG, Scharer OD (2005) The spacer region of XPG mediates recruitment to nucleotide excision repair complexes and determines substrate specificity. J Biol Chem 280: 7030–7037.
  • Evans E, Moggs JG, Hwang JR, Egly JM, Wood RD (1997) Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. Embo J 16: 6559–6573.
  • Fotedar R, Mossi R, Fitzgerald P, Rousselle T, Maga G, Brickner H, Messier H, Kasibhatla S, Hubscher U, Fotedar A (1996) A conserved domain of the large subunit of replication factor C binds PCNA and acts like a dominant negative inhibitor of DNA replication in mammalian cells. Embo J 15: 4423–4433.
  • Fousteri M, Vermeulen W, van Zeeland AA, Mullenders LH (2006) Cockayne syndrome A and B proteins differentially regulate recruitment of chromatin remodeling and repair factors to stalled RNA polymerase II in vivo. Mol Cell 23: 471–482.
  • Friedberg EC (2001) How nucleotide excision repair protects against cancer. Nat Rev Cancer 1: 22–33.
  • Friedberg EC (2005) DNA repair and mutagenesis. ASM Press, Washington, DC.
  • Gary R, Ludwig DL, Cornelius HL, MacInnes MA, Park MS (1997) The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J Biol Chem 272: 24522–24529.
  • Giglia-Mari G, Coin F, Ranish JA, Hoogstraten D, Theil A, Wijgers N, Jaspers NG, Raams A, Argentini M, van der Spek PJ, Botta E, Stefanini M, Egly JM, Aebersold R, Hoeijmakers JH, Vermeulen W (2004) A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat Genet 36: 714–719.
  • Gillet LC, Scharer OD (2006) Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 106: 253–276.
  • Gomes XV, Burgers PM (2001) ATP utilization by yeast replication factor C. I. ATP-mediated interaction with DNA and with proliferating cell nuclear antigen. J Biol Chem 276: 34768–34775.
  • Gomes XV, Schmidt SL, Burgers PM (2001) ATP utilization by yeast replication factor C. II. Multiple stepwise ATP binding events are required to load proliferating cell nuclear antigen onto primed DNA. J Biol Chem 276: 34776–34783.
  • Groisman R, Polanowska J, Kuraoka I, Sawada J, Saijo M, Drapkin R, Kisselev AF, Tanaka K, Nakatani Y (2003) The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113: 357–367.
  • Gros L, Ishchenko AA, Ide H, Elder RH, Saparbaev MK (2004) The major human AP endonuclease (Ape1) is involved in the nucleotide incision repair pathway. Nucleic Acids Res 32: 73–81.
  • Habraken Y, Sung P, Prakash L, Prakash S (1993) Yeast excision repair gene RAD2 encodes a single-stranded DNA endonuclease. Nature 366: 365–368.
  • Hanawalt PC (1994) Transcription-coupled repair and human disease. Science 266: 1957–1958.
  • Hanawalt PC (2002) Subpathways of nucleotide excision repair and their regulation. Oncogene 21: 8949–8956.
  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11: 298–300.
  • Harrington JJ, Lieber MR (1994) The characterization of a mammalian DNA structure-specific endonuclease. Embo J 13: 1235–1246.
  • Henning KA, Li L, Iyer N, McDaniel LD, Reagan MS, Legerski R, Schultz RA, Stefanini M, Lehmann AR, Mayne LV, Friedberg EC (1995) The Cockayne syndrome
  • group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 82: 555–564.
  • Hoeijmakers JH (2001) DNA repair mechanisms. Maturitas, 38: 17–22; discussion 22–13.
  • Huang TT, D’Andrea AD (2006) Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol 7: 323–334.
  • Ikegami T, Kuraoka I, Saijo M, Kodo N, Kyogoku Y, Morikawa K, Tanaka K, Shirakawa M (1998) Solution structure of the DNA- and RPA-binding domain of the human repair factor XPA. Nat Struct Biol 5: 701–706.
  • Ischenko AA, Saparbaev MK (2002) Alternative nucleotide incision repair pathway for oxidative DNA damage. Nature 415: 183–187.
  • Ishchenko AA, Deprez E, Maksimenko A, Brochon JC, Tauc P, Saparbaev MK (2006) Uncoupling of the base excision and nucleotide incision repair pathways reveals their respective biological roles. Proc Natl Acad Sci USA 103: 2564–2569.
  • Itin PH, Sarasin A, Pittelkow MR (2001) Trichothiodystrophy: update on the sulfur-deficient brittle hair syndromes. J Am Acad Dermatol 44: 891–920; quiz 921–894.
  • Jaitovich-Groisman I, Benlimame N, Slagle BL, Perez MH, Alpert L, Song DJ, Fotouhi-Ardakani N, Galipeau J, Alaoui-Jamali MA (2001) Transcriptional regulation of the TFIIH transcription repair components XPB and XPD by the hepatitis B virus x protein in liver cells and transgenic liver tissue. J Biol Chem 276: 14124–14132.
  • Johnson NA, McKenzie R, McLean L, Sowers LC, Fletcher HM (2004) 8-oxo-7,8-dihydroguanine is removed by a nucleotide excision repair-like mechanism in Porphyromonas gingivalis W83. J Bacteriol 186: 7697–7703.
  • Kamiuchi S, Saijo M, Citterio E, de Jager M, Hoeijmakers JH, Tanaka K (2002) Translocation of Cockayne syndrome group A protein to the nuclear matrix: possible relevance to transcription-coupled DNA repair. Proc Natl Acad Sci USA 99: 201–206.
  • Kleppa L, Kanavin OJ, Klungland A, Stromme P (2007) A novel splice site mutation in the Cockayne syndrome group A gene in two siblings with Cockayne syndrome. Neuroscience 145: 1397–1406.
  • Kraemer KH, Patronas NJ, Schiffmann R, Brooks BP, Tamura D, Digiovanna JJ (2007a) Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: A complex genotype-phenotype relationship. Neuroscience 145: 1388–1396.
  • Kraemer KH, Sander M, Bohr VA (2007b) New areas of focus at workshop on human diseases involving DNA repair deficiency and premature aging. Mech Ageing Dev 128: 229–235.
  • Krwawicz J, Arczewska KD, Speina E, Maciejewska A, Grzesiuk E (2007) Bacterial DNA repair genes and their eukaryotic homologues: 1. Mutations in genes involved in base excision repair (BER) and DNA-end processors and their implication in mutagenesis and human disease. Acta Biochim Polon 54: 413–434.
  • Laine JP, Egly JM (2006a) Initiation of DNA repair mediated by a stalled RNA polymerase IIO. Embo J 25: 387–397.
  • Laine JP, Egly JM (2006b) When transcription and repair meet: a complex system. Trends Genet 22: 430–436.
  • Lee SH, Hurwitz J (1990) Mechanism of elongation of primed DNA by DNA polymerase delta, proliferating cell nuclear antigen, and activator 1. Proc Natl Acad Sci USA 87: 5672–5676.
  • Lee JH, Park CJ, Arunkumar AI, Chazin WJ, Choi BS (2003) NMR study on the interaction between RPA and DNA decamer containing cis-syn cyclobutane pyrimidine dimer in the presence of XPA: implication for damage verification and strand-specific dual incision in nucleotide excision repair. Nucleic Acids Res 31: 4747–4754.
  • Lehmann AR (1995) The molecular biology of nucleotide excision repair and double-strand break repair in eukaryotes. Genet Eng (N Y) 17: 1–19.
  • Lehmann AR, Niimi A, Ogi T, Brown S, Sabbioneda S, Wing JF, Kannouche PL, Green CM (2007) Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair (Amst) 6: 891–899.
  • Leibeling D, Laspe P, Emmert S (2006) Nucleotide excision repair and cancer. J Mol Histol 37: 225–238.
  • Li L, Lu X, Peterson CA, Legerski RJ (1995) An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair. Mol Cell Biol 15: 5396–5402.
  • Li Y, Pursell ZF, Linn S (2000) Identification and cloning of two histone fold motif-containing subunits of HeLa DNA polymerase epsilon. J Biol Chem 275: 23247–23252.
  • Lindahl T, Wood RD (1999) Quality control by DNA repair. Science 286: 1897–1905.
  • Liu L, Mo J, Rodriguez-Belmonte EM, Lee MY (2000) Identification of a fourth subunit of mammalian DNA polymerase delta. J Biol Chem 275: 18739–18744.
  • Lodish H BA, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J (2004) Molecular Biology of the Cell. WH Freeman, New York, NY.
  • Matsunaga T, Park CH, Bessho T, Mu D, Sancar A (1996) Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J Biol Chem 271: 11047–11050.
  • Mellon I (2005) Transcription-coupled repair: a complex affair. Mutat Res 577: 155–161.
  • Mellon I, Hanawalt PC (1989) Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature 342: 95–98.
  • Modrich P, Anraku Y, Lehman IR (1973) Deoxyribonucleic acid ligase. Isolation and physical characterization of the homogeneous enzyme from Escherichia coli. J Biol Chem 248: 7495–7501.
  • Moggs JG, Yarema KJ, Essigmann JM, Wood RD (1996) Analysis of incision sites produced by human cell extracts and purified proteins during nucleotide excision repair of a 1,3–intrastrand d(GpTpG)-cisplatin adduct. J Biol Chem 271: 7177–7186.
  • Mu D, Park CH, Matsunaga T, Hsu DS, Reardon JT, Sancar A (1995) Reconstitution of human DNA repair excision nuclease in a highly defined system. J Biol Chem 270: 2415–2418.
  • Mu D, Wakasugi M, Hsu DS, Sancar A (1997) Characterization of reaction intermediates of human excision repair nuclease. J Biol Chem 272: 28971–28979.
  • Ng L, Tan CK, Downey KM, Fisher PA (1991) Enzymologic mechanism of calf thymus DNA polymerase delta. J Biol Chem 266: 11699–11704.
  • Nieminuszczy J, Grzesiuk E (2007) Bacterial DNA repair genes and their eukaryotic homologues: 3. AlkB dioxygenase and Ada methyltransferase in the direct repair of alkylated DNA. Acta Biochim Polon 54: 459–468
  • Nowosielska A (2007) Bacterial DNA repair genes and their eukaryotic homologues: 5. The role of recombination in DNA repair and genome stability. Acta Biochim Polon 54: 483–4940.
  • Ogi T, Lehmann AR (2006) The Y-family DNA polymerase kappa (pol kappa) functions in mammalian nucleotideexcision repair. Nat Cell Biol 8: 640–642.
  • Olinski R, Siomek A, Rozalski R, Gackowski D, Foksinski M, Guz J, Dziaman T, Szpila A, Tudek B (2007) Oxidative damage to DNA and antioxidant status in aging and age-related diseases. Acta Biochim Polon 54: 11–26.
  • Park CH, Sancar A (1994) Formation of a ternary complex by human XPA, ERCC1, and ERCC4(XPF) excision repair proteins. Proc Natl Acad Sci USA 91: 5017–5021.
  • Park CH, Bessho T, Matsunaga T, Sancar A (1995) Purification and characterization of the XPF-ERCC1 complex of human DNA repair excision nuclease. J Biol Chem 270: 22657–22660.
  • Park CJ, Choi BS (2006) The protein shuffle. Sequential interactions among components of the human nucleotide excision repair pathway. Febs J 273: 1600–1608.
  • Pascal JM, O’Brien PJ, Tomkinson AE, Ellenberger T (2004) Human DNA ligase I completely encircles and partially unwinds nicked DNA. Nature 432: 473–478.
  • Podust LM, Podust VN, Floth C, Hubscher U (1994) Assembly of DNA polymerase delta and epsilon holoenzymes depends on the geometry of the DNA template. Nucleic Acids Res 22: 2970–2975.
  • Ranalli TA, DeMott MS, Bambara RA (2002) Mechanism underlying replication protein A stimulation of DNA ligase I. J Biol Chem 277: 1719–1727.
  • Reardon JT, Sancar A (2005) Nucleotide excision repair. Prog Nucleic Acid Res Mol Biol 79: 183–235.
  • Riedl T, Hanaoka F, Egly JM (2003) The comings and goings of nucleotide excision repair factors on damaged DNA. Embo J 22: 5293–5303.
  • Sancar A, Reardon JT (2004) Nucleotide excision repair in E. coli and man. Adv Protein Chem 69: 43–71.
  • Sarasin A, Stary A (2007) New insights for understanding the transcription-coupled repair pathway. DNA Repair (Amst) 6: 265–269.
  • Sarker AH, Tsutakawa SE, Kostek S, Ng C, Shin DS, Peris M, Campeau E, Tainer JA, Nogales E, Cooper PK (2005) Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne syndrome. Mol Cell 20: 187–198.
  • Saxowsky TT, Doetsch PW (2006) RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? Chem Rev 106: 474–488.
  • Schaeffer L, Roy R, Humbert S, Moncollin V, Vermeulen W, Hoeijmakers JH, Chambon P, Egly JM (1993) DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260: 58–63.
  • Schaeffer L, Moncollin V, Roy R, Staub A, Mezzina M, Sarasin A, Weeda G, Hoeijmakers JH, Egly JM (1994) The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. Embo J 13: 2388–2392.
  • Scherly D, Nouspikel T, Corlet J, Ucla C, Bairoch A, Clarkson SG (1993) Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2. Nature 363: 182–185.
  • Sijbers AM, de Laat WL, Ariza RR, Biggerstaff M, Wei YF, Moggs JG, Carter KC, Shell BK, Evans E, de Jong MC, Rademakers S, de Rooij J, Jaspers NG, Hoeijmakers JH, Wood RD (1996) Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86: 811–822.
  • Stigger E, Drissi R, Lee SH (1998) Functional analysis of human replication protein A in nucleotide excision repair. J Biol Chem 273: 9337–9343.
  • Subba Rao K (2007) Mechanisms of disease: DNA repair defects and neurological disease. Nat Clin Pract Neurol 3: 162–172.
  • Sugasawa K, Ng JM, Masutani C, Iwai S, van der Spek PJ, Eker AP, Hanaoka F, Bootsma D, Hoeijmakers JH (1998) Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 2: 223–232.
  • Sugasawa K, Okamoto T, Shimizu Y, Masutani C, Iwai S, Hanaoka F (2001) A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev 15: 507–521.
  • Syvaoja JE (1990) DNA polymerase epsilon: the latest member in the family of mammalian DNA polymerases. Bioessays 12: 533–536.
  • Syvaoja J, Linn S (1989) Characterization of a large form of DNA polymerase delta from HeLa cells that is insensitive to proliferating cell nuclear antigen. J Biol Chem 264: 2489–2497.
  • Syvaoja J, Suomensaari S, Nishida C, Goldsmith JS, Chui GS, Jain S, Linn S (1990) DNA polymerases alpha, delta, and epsilon: three distinct enzymes from HeLa cells. Proc Natl Acad Sci USA 87: 6664–6668.
  • Tan CK, Castillo C, So AG, Downey KM (1986) An auxiliary protein for DNA polymerase-delta from fetal calf thymus. J Biol Chem 261: 12310–12316.
  • Tang JY, Hwang BJ, Ford JM, Hanawalt PC, Chu G (2000) Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol Cell 5: 737–744.
  • Truglio JJ, Croteau DL, Van Houten B, Kisker C (2006) Prokaryotic nucleotide excision repair: the UvrABC system. Chem Rev 106: 233–252.
  • Tsurimoto T, Stillman B (1989) Purification of a cellular replication factor, RF-C, that is required for coordinated synthesis of leading and lagging strands during simian virus 40 DNA replication in vitro. Mol Cell Biol 9: 609–619.
  • Uhlmann F, Cai J, Flores-Rozas H, Dean FB, Finkelstein J, O’Donnell M, Hurwitz J (1996) In vitro reconstitution of human replication factor C from its five subunits. Proc Natl Acad Sci USA 93: 6521–6526.
  • van den Boom V, Citterio E, Hoogstraten D, Zotter A, Egly JM, van Cappellen WA, Hoeijmakers JH, Houtsmuller AB, Vermeulen W (2004) DNA damage stabilizes interaction of CSB with the transcription elongation machinery. J Cell Biol 166: 27–36.
  • van Gool AJ, van der Horst GT, Citterio E, Hoeijmakers JH (1997) Cockayne syndrome: defective repair of transcription? Embo J 16: 4155–4162.
  • van Hoffen A, Venema J, Meschini R, van Zeeland AA, Mullenders LH (1995) Transcription-coupled repair removes both cyclobutane pyrimidine dimers and 6–4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group C fibroblasts. Embo J 14: 360–367.
  • van Houten B, Croteau DL, DellaVecchiaMJ, Wang H, Kisker C (2005) ‘Close-fitting sleeves’: DNA damage recognition by the UvrABC nuclease system. Mutat Res 577: 92–117.
  • Waga S, Stillman B (1998) The DNA replication fork in eukaryotic cells. Annu Rev Biochem 67: 721–751.
  • Wang Z, Svejstrup JQ, Feaver WJ, Wu X, Kornberg RD, Friedberg EC (1994) Transcription factor b (TFIIH) is required during nucleotide-excision repair in yeast. Nature 368: 74–76.
  • Wood RD (1997) Nucleotide excision repair in mammalian cells. J Biol Chem 272: 23465–23468.
  • Wood RD, Shivji MK (1997) Which DNA polymerases are used for DNA-repair in eukaryotes? Carcinogenesis 18: 605–610.
  • Wood RD, Araujo SJ, Ariza RR, Batty DP, Biggerstaff M, Evans E, Gaillard PH, Gunz D, Koberle B, Kuraoka I, Moggs JG, Sandall JK, Shivji MK (2000) DNA damage recognition and nucleotide excision repair in mammalian cells. Cold Spring Harb Symp Quant Biol 65: 173–182.
  • Wood RD, Mitchell M, Lindahl T (2005) Human DNA repair genes, 2005. Mutat Res 577: 275–283.
  • Wyman C, Botchan M (1995) DNA replication. A familiar ring to DNA polymerase processivity. Curr Biol 5: 334–337.
  • Yokoi M, Masutani C, Maekawa T, Sugasawa K, Ohkuma Y, Hanaoka F (2000) The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J Biol Chem 275: 9870–9875.
  • You JS, Wang M, Lee SH (2003) Biochemical analysis of the damage recognition process in nucleotide excision repair. J Biol Chem 278: 7476–7485.
  • Yuzhakov A, Kelman Z, Hurwitz J, O’Donnell M (1999a) Multiple competition reactions for RPA order the assembly of the DNA polymerase delta holoenzyme. Embo J 18: 6189–6199.
  • Yuzhakov A, Kelman Z, O’Donnell M (1999b) Trading places on DNA – a three-point switch underlies primer handoff from primase to the replicative DNA polymerase. Cell 96: 153–163.
  • Zhou HX, Wang G (2001) Predicted structures of two proteins involved in human diseases. Cell Biochem Biophys 35: 35–47.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-4d6077b9-0e9c-4840-ba56-fe0e4ef2171d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.