PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2010 | 55 | 1 |

Tytuł artykułu

Characterization of a transcriptionally active Tc1-like transposon in the microsporidian Nosema bombycis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Tc1 transposable element has been found in a wide variety of organisms including vertebrates, insects and fungi but has not been previously reported in Microsporidia. In this study we characterize an intact DNA transposon (NbTc1) from the microsporidian Nosema bombycis. This transposable element encodes a 337 amino acid transposase sequence, which contains the D,D34E functional motif required for transposition. A Southern blot of N. bombycis DNA separated by pulsedesis shows that copies of the NbTc1 transposon are present on 10 of the 14 chromosomes of N. bombycis. Amino acid sequence variation among copies of the NbTc1 is low, suggesting a conserved function for this transposon within N. bombycis. Phylogenetic analysis indicates that NbTc1 is a new member of the Tc1 family lineage, quite distinct from all previously described Tc1 elements, including those from fungi, indicating that NbTc1 forms a unique clade of the Tc1 superfamily. However, the Tc1 transposon is too divergent to resolve the major phylogenetic relationships among these superfamilies. Reverse transcriptase PCR and Solexa sequencing suggest that NbTc1 possesses transcriptional activity. Considering the interest in Microsporidia as biological control agents, the NbTc1 transposon may be a useful vector for the efficient transfection of these important parasites into host species.

Wydawca

-

Czasopismo

Rocznik

Tom

55

Numer

1

Opis fizyczny

p.8-15,fig.,ref.

Twórcy

autor
  • Chongqing Normal University, Chongqing 400047, China
autor
autor
autor
autor

Bibliografia

  • Adelman Z.N., Jasinskiene N., Jame A.A. 2002. Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti. Molecular and Biochemical Parasitology, 121, 1–10. DOI: 10.1016/S0166-6851(02)00028-2.
  • Avancini R.M.P., Kimberley W.K.O., Robertson H.M. 1996. The genomes of most animals have multiple members of the Tc1 family of transposable elements. Genetica, 98, 131–140. DOI:10.1007/BF00121361.
  • Daboussi M J., Langin T., Brygoo Y. 1992. Fot1, a new family of fungal transposable elements. Molecular and General Genetics, 232, 12–16. DOI: 10.1007/BF00299131.
  • Emmons S.W., Yesner L., Ruan K.S., Katzenberg D. 1983. Evidence for a transposon in Caenorhabditis elegans. Cell, 32, 55–65. DOI: 10.1016/0092-8674(83)90496-8.
  • Franz G., Savakis C. 1991. Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Research, 19, 6646. DOI: 10.1093/nar/19.23.6646.
  • Gill E.E., Becnel J.J., Fast N.M. 2008. ESTs from the microsporidian Edhazardia aedis. BMC Genomics, 9, 296. DOI: 10.1186/1471-2164-9-296.
  • Gueiros-Filho F.J., Beverley S.M. 1997. Trans-kingdom transposition of the Drosophila element mariner within the protozoan Leishmania. Science, 276, 1716–1719. DOI: 10.1126/science. 276.5319.1716.
  • Hinkle G., Morrison H.G., Sogin M.L. 1997. Genes coding for reverse transcriptase, DNA-directed RNA polymerase, and chitin synthase from the microsporidian Spraguea lophii. Biological Bulletin, 193, 250–251.
  • Hirt R.P., Logsdon J.M., Healy B., Dorey M.W., Doolittle W.F., Embley T.M. 1999. Microsporidia are related to fungi: Evidence from the largest subunit of RNA polymerase II and other proteins. Proceedings of the National Academy of Sciences, 96, 580–585. DOI: 10.1073/pnas.96.2.580.
  • Ivics Z., Hackett P.B., Plaster R.H., Izsvak Z. 1997. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish and its transposition in human cells. Cell, 91, 501–510. DOI:10.1016/S0092-8674(00)80436-5.
  • Izsvak Z., Ivics Z., Plasterk R.H. 2000. Sleeping Beauty, a wide hostrange transposon vector for genetic transformation in vertebrates. Journal of Molecular Biology, 302, 93–102. DOI:10.1006/jmbi.2000.4047.
  • James T.Y., Kauff F., Schoch C.L., Matheny P.B., Hofstetter V., Cox C.J., Celio G., Gueidan C., Fraker E., Miadlikowska J., Lumbsch H.T., Rauhut A., Reeb V., Arnold A.E., Amtoft A., Stajich J.E., Hosaka K., Sung G.H., Johnson D., O’Rourke B., Crockett M., Binder M., Curtis J.M., Slot J.C., Wang Z., Wilson A.W., Schmitt I., Schultz M., Yahr R., Hibbett D.S., Lutzoni F., McLaughlin D.J., Spatafora J.W., Vilgalys R. 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature, 443, 818–822. DOI: 10.1038/nature05110.
  • Keane T.M., Creevey C.J., Pentony M.M., Naughton T.J., McInerney J.O. 2006. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evolutionary Biology, 6, 29. DOI: 10.1186/1471-2148-6-29.
  • Keeling P.J. 2003. Congruent evidence from alpha-tubulin and betatubulin gene phylogenies for a zygomycete origin of mi crosporidia. Fungal Genetics and Biology, 38, 298–309. DOI:10.1016/S1087-1845(02)00537-6.
  • Keeling P.J., Luke M.A., Palmer J.D. 2000. Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. Molecular Biology and Evolution, 17, 23–31.
  • Langin T., Capy P., Daboussi M.J. 1995. The transposable element impala, a fungal member of the Tc1-mariner superfamily. Molecular and General Genetics, 246, 19–28. DOI: 10.1007/BF00290129.
  • Lee S.C., Corradi N., Byrnes E.J., Torres-Martinez S., Dietrich F.S., Keeling P.J., Heitman J. 2008. Microsporidia evolved from ancestral sexual fungi. Current Biology, 18, 1–5. DOI:10.1016/j. cub.2008.09.030.
  • Li F., Wang Y. 2006. The Comparison of DNA Extraction Methods of Microsporidia. Guangdong Sericulture, 40, 32–34.
  • Liao L.W., Rosenzweig B., Hirsh D. 1983. Analysis of a transposable element in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 80, 3585–3589. DOI: 10.1073/pnas.80.12.3585.
  • Mittleider D., Green L.C., Mann V.H., Michael S.F., Didier E.S., Brindley P.J. 2002. Sequence survey of the genome of the opportunistic microsporidian pathogen, Vittaforma corneae. Journal of Eukaryotic Microbiology, 49, 393–401. DOI:10.1111/j.1550-7408.2002.tb00218.x.
  • Plasterk R.H.A., Luenen H.G.A.M. 2002. The Tc1/Mariner family of transposable elements. In: (Eds. N.L. Craig, R. Craigie, M. Geller and A.M. Lambowitz) Mobile DNA II. ASM Press, Washington DC, 519–532.
  • Robertson H.M. 2002. Evolution of DNA transposons in eukaryotes. In: (Eds. N.L. Craig, R. Craigie, M. Geller and A.M. Lambowitz) Mobile DNA II. ASM Press, Washington DC, 1093–1110.
  • Rosenzweig B., Liao L.W., Hirsh D. 1983. Sequence of the C. elegans transposable element Tc1. Nucleic Acids Research, 11, 4201–4209. DOI: 10.1093/nar/11.20.7137.
  • Schmidt H.A., Strimmer K., Vingron M., Haeseler A. 2002. TREEPUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics, 18, 502–504. DOI: 10.1093/bioinformatics/18.3.502.
  • Schouten G.J., Luenen V.H., Verra N., Valerio D., Plasterk R. 1998. Transposon Tc1 of the nematode Caenorhabditis elegans jumps in human cells. Nucleic Acids Research, 26, 3013–3017. DOI: 10.1093/nar/26.12.3013.
  • Shao H., Tu Z. 2001. Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics, 159, 1103–1115.
  • Sherman A.A., Dawson C., Mather H., Gilhooley Y., Li R., Mitchell D.F., Sang H. 1998. Transposition of the Drosophila element mariner into the chicken germ line. Nature Biotechnology, 16, 1050–1053. DOI: 10.1038/3497.
  • Silva J.C., Bastida F., Bidwell S.L., Johnson P.J., Carlton J.M. 2005. A potentially functional mariner transposable element in the protist Trichomonas vaginalis. Molecular Biology and Evolution, 22, 126–134. DOI: 10.1093/molbev/msh260.
  • Starr T.K., Largaespada D.A. 2005. Cancer gene discovery using the Sleeping Beauty transposon. Cell Cycle, 4, 1744–1748.
  • Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599. DOI:10.1093/molbev/msm092.
  • Thomarat F., Vivares C.P., Gouy M. 2004. Phylogenetic analysis of the complete genome sequence of Encephalitozoon cuniculi supports the fungal origin of microsporidia and reveals a high frequency of fastevolving genes. Journal of Molecular Evolution, 59, 780–791. DOI: 10.1007/s00239-004-2673-0.
  • Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882. DOI:10.1093/nar/25.24.4876.
  • Williams B.A.P., Lee R.C., Becnel J.J., Weiss L.M., Fast N.M., Keeling P.J. 2008. Genome sequence surveys of Brachiola algerae and Edhazardia aedis reveal microsporidia with low gene densities. BMC Genomics, 9, 200. DOI: 10.1186/1471-2164-9-200.
  • Wittner M. 1999. Historic perspective on the microsporidia: expanding horizons. In: (Eds. M. Wittner and L.M. Weiss) The Microsporidia and Microsporidiosis. ASM Press, Washington DC, 1–6.
  • Xu J.S., Pan G.Q., Li T., Zhou Z.Y., Xiang Z.H. 2006. The varying microsporidian genome: existence of LTR retrotransposon in domesticated silkworm parasite Nosema bombycis. International Journal for Parasitology, 36, 1049–1056. DOI:10.1016/j.ijpara.2006.04.010.
  • Zagoraiou L., Drabek D., Alexaki S., Guy J.A., Klinakis A.G., Langeveld A., Skavdis G., Mamalaki C., Grosveld F., Savakis C. 2001. In vivo transposition of Minos, a Drosophila mobile element, in mammalian tissues. Proceedings of the National Academy of Sciences, 98, 11474–11478.
  • Zwaal R.R., Broeks A., Vanmeurs J., Groenen J., Plasterk R. 1993. Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proceedings of the National Academy of Sciences, 90, 7431–7435. DOI: 10.1073/pnas.90.16.7431.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-4ca6cb37-bd58-4a3b-880d-e010fa601dad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.