PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 13 | 2 |

Tytuł artykułu

Biotransformation of phosphogypsum by sulphate-reducing bacteria in media containing different zinc salts

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effect of zinc on the biotransformation of phosphogypsum, COD reduction and growth rate (μmax day-1) of an SRB community and Desulfotomaculum ruminis in media with sodium lactate or ethanol was examined. Depending on the form of zinc (Zn3(PO4)2 x 4H2O, ZnSO4 x7H2O, ZnCl2, Zn(NO3)2 x 6H2O) and its initial concentration (0-80 mg Zn2+/l) lower sulphate reduction and COD reduction was observed. The effect of Zn2+ also depended on the composition of the studied populations and carbon source in the medium. The lowest inhibition of specific growth rate was determined in cultures of the pure strain and in medium with zinc phosphate (with lactate or ethanol IC50=63 or 75 mg Zn2+/l, respectively) and the highest in cultures of sulphate-reducing bacterial communities in medium with zinc nitrate (with lactate or ethanol IC50= 35 or 20 mg Zn2+/l, respectively).

Wydawca

-

Rocznik

Tom

13

Numer

2

Opis fizyczny

p.209-217,fig.,ref.

Twórcy

autor
  • Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland
autor
autor

Bibliografia

  • 1. POSTGATE J. R. The sulfate-reducing bacteria. 2nd ed., Cambridge University Press, Cambridge, 1984.
  • 2. WIDDEL F. Microbiology and ecology of sulfate and sulfurreducing bacteria. Zehnder A.J.B. (ed.). Biol. of Anaerob. Microorg., Wiley & Sons, New York, 1988.
  • 3. GIBSON G.R. Physiology and ecology of the sulfate-reducing bacteria. J. Appl. Bacteriol. 69, 769, 1990.
  • 4. FAUQUE G., LEGALL J., BARTON L.L. Sulfate-reducing and sulfur-reducing bacteria. In: Shivley J.M., Barton L.L. (eds), Variations in Autotrophic Life, Academic Press, London, San Diego, pp 271-337, 1991.
  • 5. GADD G.M., WHITE C. Mixed sulfate-reducing bacterial cultures for bioprecipitation of toxic metals: factorial and response-surface analysis of dilution rate, sulfate and substrate concentration. Microbiol., 142, 197, 1996.
  • 6. HAO O.J., CHEN J.M., HUANG L.J., BUGLASS R.L. Sulfate-reducing bacteria. Critical Rev. Environ. Sci. Technol. 26, 155, 1996.
  • 7. CLANCY P., VENKATARAMAN N., LYND R.L. Biochemical inhibition of sulfate reduction in batch and continuous anaerobic digesters. Wat. Sci. Technol. 25, 51, 1992.
  • 8. DZIERŻEWICZ Z., CWALINA B., CHODUREK E., WILCZOK T. The relationship between microbial activity and biocorrosion of carbon steel. Res. Microbiol. 148, 785, 1997.
  • 9. SONG Y.CH., PIAK B.CH., SHIN H.S., LA S.J. Influence of electron donor and toxic materials on the activity of sulfate-reducing bacteria for the treatment of electroplating wastewater. Wat. Sci. Technol. 38, 187, 1998.
  • 10. SANI R.K., PEYTON B.M., BROWN L.T. Copper-induced inhibition of growth of Desulfovibrio desulfuricans G20: assessment of its toxicity and correlation with those of zinc and lead. Appl. Environ. Microbiol. 67, 4765, 2001.
  • 11. BABICH H., STOTZKY G. Developing standards for the environmental toxicants: The need to consider abiotic environmental factors and microbe-mediated ecologic processes. Environ. Health Perspectives, 49, 247, 1983.
  • 12. GADD G.M., Heavy Metal Pollutants: Environmental and Biotechnological Aspects. Encyclopedia of Microbiology, 2, 351, 1992.
  • 13. FERNANDEZ X.A.,CANTWELL A.D., MOSEY F.E. Anaerobic biological treatment sewage. Wat. Pollut. Control. 84, 99, 1985.
  • 14. COWLING S.J., GARDNER M.J., HUNT D.T.E. Removal of heavy metal from sewage sulphide precipitation, thermodynamic calculation and tests on pilot- scale anaerobic reactor. Environ. Technol. 13, 281, 1992.
  • 15. DVORAK D.H., HEDIN R.S., EDENBORN H.M., McINTIRE P.E. Treatment of metal-contaminated water using bacterial sulfate reduction: results from pilot scale reactors. Biotechnol. Bioengin. 40, 609, 1992.
  • 16. HAMMECK R.W., EDENBORN, H.M. The removal of nickel from mine waters using bacterial sulfate reduction. Appl. Microbiol. Biotechnol. 37, 674, 1992.
  • 17. HASS C., POLPRASET CH. Biological sulfide prestripping for metal and COD removal. Water Environ. Res. 65, 645, 1993.
  • 18. EGER P. Wetland treatment for trace metal removal from mine drainage: the importance of aerobic and anaerobic processes. Wat. Sci.Tech. 29, 249, 1994.
  • 19. KOWALSKI W., PARAFINIUK J., STĘPISIEWICZ M. Mineralogy and geochemy of phosphogypsum from Wizów Chemical Plant heaps (in Polish). Archiwum Mineralogiczne. 45, 115, 1990.
  • 20. KOWALSKI W., BŁASZCZYK M., MYCIELSKI R., PRZYTOCKA-JUSIAK M., RZECZYCKA M. Microbiological recovery of lanthanides from phosphogypsum waste. Appl. Mineralogy Proceedings of the 5th International Congress on Applied Mineralogy in the Minerals Industry. Warsaw University of Technology, 2-5 June, 1996.
  • 21. PRZYTOCKA-JUSIAK M., KOWALSKI W., RZECZYCKA M., BŁASZCZYK M., MYCIELSKI R. Microbiological phosphogypsum transformation products in thermophilic anaerobic cultures. (in Polish). Biotechnologia. 29, 103, 1995.
  • 22. PRZYTOCKA-JUSIAK M., RZECZYCKA M., PONICHTERA E., MYCIELSKI R. Degradation of benzene by thermophilic sulfate-reducing bacteria. (in Polish). Materiały z V Ogólnopolskiego Sympozjum Naukowo-Technicznego „Biotechnologia Środowiskowa”. Wrocław, 1997.
  • 23. RZECZYCKA M., FLORCZAK A., BŁASZCZYK M., MYCIELSKI R. Growth parameters of sulfate-reducing bacteria in the presence of zinc. (in Polish). Materiały z VI Ogólnopolskiego Sympozjum Naukowo-Technicznego „Biotechnologia Środowiskowa”. Wrocław. 1999.
  • 24. RZECZYCKA M., MYCIELSKI R., KOWALSKI W., GAŁĄZKA M. Biotransformation of phosphogypsum in media containing different forms of nitrogen. Acta Microbiol. Polon. 50, (3/4), 281, 2001.
  • 25. CAMPBELL L.L., POSTGATE J.R. Classification of the spore-forming sulfate-reducing bacteria. Bacteriol. Rev. 29, 359, 1965.
  • 26. Bergey’s Manual of Systematic Bacteriology. Baltimore London (1984), 663-679; (1985), 1200-1202; (1989), 2128-2131.
  • 27. WIDDEL F. The genus Desulfotomaculum. In: The Procaryotes. Balows A., Truper H.G., Dworkin M., Harder W., Schleifer K.H. (eds). Springer-Verlag. New York, pp. 1792-1799, 1992.
  • 28. MALINA J. Chemical oxygen demand. Analytical procedures and methods. Prepared for Poland Project. 26 WHO. University of Texas of Austin. 1967.
  • 29. BROCK T.D., MADIGAN M.T. Biology of the Microorganisms. 6th Edition. Prentice-Hall. International. NY, 16, 562, 1991.
  • 30. BRYANT M.P., CAMPBELL L.L., REDDY C.A., CRABILL M.R. Growth of Desulfovibrio on lactate or ethanol media low in sulfate with H2 utilizing methanogenic bacteria. Appl. Environ. Microbiol. 3, 1162, 1977.
  • 31. LAANBROEK H.J., GEERLINGS H.J., SIJSMA L., VELDKAMP H. Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus and Desulfovibrio species isolated from intertidal sediments. Appl. Environ. Microbiol. 47, 329, 1984.
  • 32. KREMER D.R., NIENHUIS-KUIPER H.E., HANSEN T.A. Ethanol dissimilation in Desulfovibrio. Arch. Microbiol. 150, 552, 1988.
  • 33. SZEWZYK R., PFENNING N. Competition for ethanol between sulfate-reducing bacteria and fermenting bacteria. Arch. Microbiol. 153, 470, 1990.
  • 34. REINCHENBECHER W., SCHINK B. Desulfovibrio inopinatus, sp. nov., a new sulfate-reducing bacterium that degrades hydroxyhydroquinone (1,2,4- trichydroxybenzene). Arch. Microbiol. 168, 338, 1997.
  • 35. OUEDE ELFERINK S.J.W.H., VORTSMAN W.J.C., SOPJES A., STAMS A.J.M. Desulforhabdus amingeus gen. sp. nov., a sulfate reducers isolated from anaerobic granular sludge. Arch. Microbiol. 164, 119, 1995.
  • 36. MANCINELLI R.L., McKAY C.P. Effects of nitric oxide on bacterial growth. Appl. Environ. Microbiol. 46, 198, 1983.
  • 37. JENNEMAN G.E., McINERNEY M.J., KNAPP R.M. Effects of nitrate on biogenic sulfide production. Appl. Environ. Microbiol. 51, 1205, 1986.
  • 38. WIMPENNY J., ABDOLAHI H. Growth of mixed cultures of Paracoccus denitrificans in homogenous and Desulfovibrio desulfuricans in heterogenous culture systems. Microbiol. Ecology. 22, 1, 1991.
  • 39. RAM M.S., SINGH L., SURYANARAYANA M.V.S., ALAM S.I. Effect of sulfate and nitrate on anaerobic oxidation of volatile fatty acids in rabbit waste at 20℃. J. Gen. Appl. Microbiol. 41, 181, 1995.
  • 40. LESTER J.N., PERRY R., DADD A.H. The influence of heavy metals on a mixed bacterial population of sewage origin in the chemostat. Water Res., 13, 1055, 1979.
  • 41. McCARTNEY D.M., OLESZKIEWICZ J.A. Sulfide inhibition of anaerobic degradation of lactate and acetate. Wat. Res. 25, 303, 1991.
  • 42. REIS M.A.M., ALMEIDA J.S., LEMOS P.C., CORRONDO M.J.T. Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnol. Bioengin. 40, 593, 1992.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-4c7dfed1-fff0-4571-a006-b4c852ca7e6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.