PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 24,Suppl.A |

Tytuł artykułu

Neurony splotu miednicznego samca swini - organizacja przestrzenna oraz immunohistochemiczna charakterystyka, ze szczegolnym uwzglednieniem neuronow zaopatrujacych nasieniowod

Autorzy

Warianty tytułu

Języki publikacji

PL

Abstrakty

PL
W niniejszej pracy opisano organizację przestrzenną neuronów splotu miednicznego niedojrzałego płciowo samca świni, a także przedstawiono rezultaty badań dotyczących neurochemicznego kodowania tych komórek nerwowych. Opisano również rozmieszczenie neuronów tego splotu unerwiających nasieniowód oraz neurochemiczne cechy tej grupy neuronów. U wszystkich badanych zwierząt stwierdzano obecność większego zwoju - ganglion pelvinum anterior (GPA) - zlokalizowanego w kącie zawartym pomiędzy cewkowym końcem miednicznego odcinka nasieniowodu i częścią doczaszkową gruczołu pęcherzykowego. Pozostałe neurony miedniczne splotu były zgrupowane w zwojach, których ogół tworzył dosyć zwartą strukturę o skomplikowanej budowie. Struktura ta składała się z dwóch pasm zwojów - prawego i lewego, biegnących po bokach i wzdłuż miednicznego odcinka przewodu moczopłciowego, w kącie utworzonym przez ten przewód i gruczoły - pęcherzykowy, a doogonowo - opuszkowo-cewkowy. Wspomniany GPA zapoczątkowywał te pasma od stromy doczaszkowej. Stwierdzono ponadto, iż lewe i prawe pasma zwojów połączone były kilkoma (3-5) pasmami zwojów przebiegających poprzecznie, o kształcie podków wygiętych ku górze, leżących na dogrzbietowej powierzchni miednicznego odcinka przewodu moczopłciowego, pod gruczołami płciowymi dodatkowymi. Przy użyciu techniki wstecznego znakowania neuronów fluorescencyjnym tracerem Fast Blue (FB) wykazano, iż zwoje miedniczne samca świni zawierają wiele neuronów zaopatrujących nasieniowód. Większość FB-pozytywnych (FB+) neuronów unerwiających lewy nasieniowód zlokalizowana była po stronie badanego narządu (ipsilateralnie), ale także, w mniejszej liczbie, po stronie przeciwległej (kontralateralnie) zarówno w GPA, jak i wielu innych zwojach. W badaniach immunohistochemicznych stosowano immunofluorescencyjne barwienia pojedyncze i podwójne, metodę Tramu oraz porównywanie skrawków stycznych, barwionych w kierunku różnych substancji w celu określenia ich współwystępowania w tych samych strukturach nerwowych. Badania te wykazały, iż GPA jest zwojem „mieszanym", składającym się w mniej więcej równej liczbie z neuronów zarówno adrenergicznych, zawierających enzymy toru katecholaminowego (hydroksylazę tyrozyny - TH i β-hydroksylazę dopaminy - DβH), jak i nieadrenergicznych. Jednakże zdecydowana większość zlokalizowanych w GPA neuronów zaopatrujących nasieniowód świni należała do populacji neuronów adrenergicznch. Stwierdzono ponadto, że neurony GPA samca świni zawierają, oprócz enzymów toru katecholaminowego, również wiele neuropeptydów, które mogą współwystępować w tych komórkach nerwowych. Neuropeptydami najczęściej występującymi lub współwystępującymi w neuronach adrenergicznych (także w subpopulacji neuronów unerwiających nasieniowód) były Met5-enkefalina-Arg6- Gly7-Leu8 (MEAGL) i neuropeptyd Y (NPY), w mniejszym zaś stopniu galanina (GAL). Neuropeptydami najczęściej występującymi lub współwystępujacymi w neuronach nieadrenergicznych, w tym także w neuronach FB+, były NPY - naczynioaktywny peptyd jelitowy (VIP) i somatostatyna (SOM) oraz w znacznie mniejszym stopniu peptyd syntetyzowany na genie kalcytoniny (CGRP). W badanych zwojach splotu miednicznego stwierdzono obecność dużej liczby żylakowatych włókien nerwowych zawierających CGRP i jednocześnie substancję P (SP). Włókna te zaopatrywały szczególnie intensywnie neurony adrenergiczne, a zatem i zdecydowaną większość neuronów FB+. Włókna nerwowe zawierające inne badane substancje były znacznie mniej liczne, a pojedyncze na ogól zakończenia nerwowe zaopatrywały niektóre neurony zarówno adrenergiczne, jak i nieadrenergiczne.
EN
This paper deals with the distribution and immunohistochemical characteristics of neu­rons in the pelvic plexus of the juvenile male pig. The arrangement and neurochemical coding of pelvic neurons supplying the vas deferens are also described. The investigations revealed the presence of a larger ganglion (called the anterior pelvic ganglion, GPA) in the angle between the urethral end of the vas deferens and the cranial end of the seminal vesicle. The remaining pelvic neurons were located caudally and clustered in ganglia which altogether formed a compact, but complex structure. The structure consisted of left and right stripes of ganglia distributed on and along lateral sides of the pelvic part of the urogenital duct. The stripes occupied the angles between the laterally protruding parts of the seminal vesicles and bulbourethral glands, and the urogenital duct. The stripes were interconnected with transversal, horse shoe-shaped bands (3-5) of ganglia which ran on the upper surface, of the urogenital duct under the accessory genital glands. By means of the retrograde tracing technique using the fluorescent tracer Fast Blue (FB) the pelvic ganglia were found to contain many neurons supplying the vas deferens. FB-positive (FB+) neurons occurred in both left and right GPAs and other ganglia, however, the majority of them were located ipsilaterally. The immunohistochemistry included single- and double-labelling immunofluorescence, combined sometimes with Tramu method. Additionally, con­secutive sections stained for different substances were compared to investigate the colocalization of the antigens. It has been found that the GPA is a "mixed" ganglion consisting of both adrenergic, containing catecholamine-synthesizing enzymes (tyrosine hydroxylase, TH and dopamine β-hydroxylase, DβH), and roughly the same number of non-adrenergic neurons. The vast majority of FB+ neurons belonged to the subpopulation of adrenergic neurons. Besides the catecholamine-synthesizing enzymes, pelvic neurons were found to contain some neuropeptides that often co-existed within these nerve cell bodies. Met5-enkephalin-Arg6-Gly7-Leu8 (MEAGL), neuropeptide Y (NPY), and, to a lesser extent, galanin (GAL) were the peptides most often occurring and co-localizing within adrenergic, including FB+, neurons. Non-adrenergic neurons, including FB+ nerve cells, usually contained NPY, vasoactive intestinal polypeptide (VIP) and/or somatostatin (SOM) and, less frequently, calcitonin gene-related peptide (CGRP). Numerous varicose nerve fibres containing both CGRP and substance P (SP) were detected within the ganglia studied. These fibres, however, intensely innervated only adrenergic neurons, thus, also the vast majority of FB-positive nerve cells. Nerve fibres positive to other substances investigated were definitely less numerous and they often supplied both adrenergic and non-adrenergic neurons with single nerve fibres.

Wydawca

-

Rocznik

Opis fizyczny

s.1-54,rys.,fot.,tab.,tabl.,bibliogr.

Twórcy

autor
  • Akademia Rolniczo-Techniczna, Olsztyn

Bibliografia

  • Alm P. 1982. On the autonomic innervation of the human vas deferens. Brain Res. Bul., 9: 673-677.
  • Alm P., Lundberg L.M. 1988. Co-existence and origin of peptidergic and adrenergic nerves in the guinea pig uterus. Cell Tissue Res., 254: 517-530.
  • Alm P., Alumets J., Håkanson R., Sundler F. 1977. Peptidergic (vasoactive intestinal peptide) nerves in the genito-urinary tract. Neuroscience, 2: 751-754.
  • Alm P., Alumets J., Brodin E., Håkanson R., Nilsson G., Sjöberg N.O., Sundler F. 1978. Peptider­gic (substance P) nerves in the genito-urinary tract. Neuroscience 3: 419-425.
  • Alm P., Alumets J., Håkanson R., Owman C. Sjöberg N.O., Stjernquist M., Sundler F. 1981. Enke- phalin-immunoreactive nerve fibres in the feline genito-urinary tract. Histochemistry, 72: 351-355.
  • Al-Zuhair A, Gosling J.A., Dixon J.S. 1975. Observations on the structure and autonomic innervation of the guinea-pig seminal vesicle and ductus deferens. J. Anat., 120: 81-93.
  • Bauer F.E., Christofides N.D., Hacker G.W., Blank M.A., Polak J.M., Bloom S.R. 1986. Distribu­tion of galanin immunoreactivity in the genitourinary tract of man and rat. Peptides, 7: 5-10.
  • Baumgarten H.G., Falck В., Holstein A.F., Owman С., Owman Т. 1968. Adrenergic innervation of the human testis, epididymis, ductus deferens and prostate: a fluorescence microscopic and fluorimetric study. Z. Zellforsch. 90: 81-95.
  • Bell C., McLean J.R. 1967. Localization of norepinephrine and acetylcholinesterase in separa­te neurons supplying the guinea pig vas deferens. J. Pharmacol. Exp. Ther. 157: 69-73.
  • Bell C., McLean J.R. 1970. The distribution of adrenergic and cholinergic nerve fibres in the retractor penis and vas deferens of the dog. Z. Zellforsch., 106: 516-522.
  • Boratyński Z. 1983. Autonomiczne zwoje nerwowe dodatkowe w nerwach dochodzących do układu moczopłciowego tryka. Annales UMCS Sectio DD, 37/6: 45-59.
  • Bowers C.W., Zigmond R.E. 1979. Localization of neurons in the rat superior cervical gan­glion that project into different postganglionic trunks. J. Comp. Neurol., 185: 381-392.
  • Bucher В., Corriu C., Stocklet J.C. 1992. Prejunctional opioid m-receptors and adenosine A1-receptors on the sympathetic nerve endings of the rat tail artery interact with the α2- adrenoceptors. Naunyn-Schmiedeberg's Arch. Pharmacol., 345: 37-43.
  • Ceccatelli S., Lundberg J.M., Zhang X., Zman K., Hökfelt T. 1994. Immunohistochemical de­monstration of nitric oxide synthase in the peripheral autonomic nervous system. Bra­in. Res., 656: 381-395.
  • Cheung A., Polak. J.M., Bauer F.E., Cadieux A., Christofides N.D., Springall D.R., Bloom S.R. 1985. Distribution of galanin immunoreactivity in the respiratory tract of pig, guinea pig, rat, and dog. Thorax, 40: 889-896.
  • Costa M., Furness J.B. 1973a. Observations on the anatomy and amine histochemistry of the nerves and ganglia which supply the pelvic viscera and on the associated chromaf­fin tissue in the guinea-pig. Z. Anat. Entwickl.-Gesch. 140: 85-108.
  • Costa M., Furness J.B. 1973b. The origins of the adrenergic fibres which innervate the internal anal sphincter, the rectum and other tissues of the pelvic region in the guinea- pig. Z. Anat. Entwickl.-Gesch. 140: 129-142.
  • Dail W.G., Dziurzynski R., 1985. Substance P immunoreactivity in the major pelvic ganglion of the rat. Anat. Rec. 212: 103-109.
  • Dail W.G. Jr, Evan A.P. Jr, Eason H.R. 1975. The major ganglion in the pelvic plexus of the male rat. A histochemical and ultrastructural study. Cell Tiss. Res., 159: 49-62.
  • Dail W.G., Manzanares K, Moll M.A., Minorsky N. 1985. The hypogastric nerve innervates a population of penile neurons in the pelvic plexus. Neuroscience, 16: 1041-1046.
  • Dalsgaard C.-J., Hökfelt Т., Elfvin L.-G., Terenius L. 1982. Enkephalin-containing sympathetic preganglionic neurons projecting to the inferior mesenteric ganglion: evidence from combined retrograde tracing and immunohistochemistry. Neuroscience, 7: 2039-2050.
  • DeCamilli P., Vitadello M., Canevini M.P., Zanoni R., Jahn., Gorio A. 1988. The synaptic vesicle proteins synapsin I and synaptophysin (protein P38) are concentrated both in efferent and afferent nerve endings of the skeletal muscle. J. Neurosci. 8: 1625-1631.
  • DeGroat W.C. 1987. Neuropeptides in pelvic afferent pathways. Experientia, 43: 801-813.
  • DeGroat W.C., Steers W.D. 1990. Autonomic regulation of the urinary bladder and sexual organs. W: Central regulation of autonomic functions. Loewy E.A., Spyer K.A. (edyt.) N.Y., Oxford, 310-333.
  • Dhami D., Mitchell B.S. 1991. Specific patterns of immunoreactivity in neuronal elements of the anterior major pelvic ganglion of the male guinea-pig. J. Anat., 176: 197-210.
  • Dhami D., Mitchell B.S. 1994. Chemical coding of neurons projecting to pelvic viscera in the male guinea pig: a study by retrograde transport and immunohistochemistry. Histochem. J., 26: 262-270.
  • Dodds W.J. 1982. The pig model for biomedical research. Fed. Proc., 41: 247-256.
  • Domoto Т., Tsumori T. 1994. Co-localization of nitric oxide synthase and vasoactive intesti­nal peptide immunoreactivity in neurons of the major pelvic ganglion projecting to the rat rectum and penis. Cell Tissue Res., 278: 273-278.
  • Domoto Т., Zhang W.B., Tsumori Т., Oki M. 1994. Distribution of extrinsic enkephalin-containing nerve fibres in the rat rectum and their origin in the major pelvic ganglion. J. Autonom. Nerv. Syst., 49: 135-146.
  • Doods H.N., Krause J. 1991. Different neuropeptide Y receptor subtypes in rat and rabbit vas deferens. Europ. J. Pharmacol., 204: 101-103.
  • Dun N.J., Jiang Z.G. 1982. Non-cholinergic excitatory transmission in inferior mesenteric ganglia of the guinea-pig: Possible mediation by substance P. J. Physiol. (Lond.), 325: 145-159.
  • Dun N.J., Mo N. 1988. Calcitonin gene-related, peptide evokes fast and slow depolarizing responses in guinea pig coeliac neurons. Neurosci. lett., 87: 157-162.
  • Edvinsson L., Fallgren В., Håkanson R. 1989. Neuropeptide Y in the modulation of autonomic nervous function. W: Neuropeptide Y. Mutt V. (ed.), Raven Press, New York, 163-170.
  • Ekbald E., Håkanson R., Sundler F., Wahlestedt С. 1985. Galanin: neuromodulator and direct contractile effects on smooth muscle preparations. Br. J. Pharmacol., 86: 241-246.
  • Falck В., Hillarp N.-A., Thieme G., Torp A. 1962. Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem., 10: 348-354.
  • Ferry C.B. 1966. The innervation of the vas deferens of the guinea-pig. J. Physiol. (Lond.), 192: 463-478.
  • Flieger S. 1976. Eksperymentalne badania nad lokalizacją ośrodków nerwowych narządów płciowych u tryka. Annales UMCS Sectio DD, 31/9: 67-85.
  • Frewein J. 1978. Ausbildung und topographie des ganglion pelvinum beim gerbil. Acta Anat., 100: 365-368.
  • Fried G., Terenius L., Hökfelt Т., Goldstein M. 1985. Evidence for differential localization of noradrenaline and neuropeptide Y in neuronal storage vesicles isolated from rat vas deferens. J. Neurosci., 5: 450-458.
  • Furness J.B., Iwayama T. 1972. The arrangement and identification of axons innervating the vas deferens of the guinea-pig. J. Anat., 113: 179-196.
  • Garry M.G., Miller K.E., Seybold V.S. 1989. Lumbar dorsal root ganglia of the cat: A quanti­tative study of peptide immunoreactivity and cell size. J. Comp. Neurol., 284: 36-47.
  • Glazer E.J., Basbaum A.I. 1980. Leucine enkephalin: Localization in and axoplasmic trans­port by sacral parasympathetic preganglionic neurons. Science, 208: 1479-1481.
  • Goshal N.G., Getty R. 1969. Postdiaphragmatic disposition of the pars sympathica and major autonomic ganglia of the domestic pig (Sus scrofa domesticus). Anat. Anz. Bd., 125: 400-411.
  • Goto K., Kimura S., Saito A. 1987. Inhibitory effect of calcitonin gene-related peptide (CGRP) on excitation and contraction of smooth muscles of the rat vas deferens. J. Pharmacol. Exp. Ther. 241: 635-641.
  • Grozdanovic Z., Baumgarten H.G., Brüning G. 1992. Histochemistry of NADPH-diaphorase, a marker for neuronal nitric oxide synthase, in the peripheral autonomic nervous system of the mouse. Neuroscience, 48: 225-235.
  • Gu J., Polak J.M., Su H.C., Blank M.A., Morrison J.F.B., Bloom S.R. 1984. Demonstration of paracervical ganglion origin for the vasoactive intestinal peptide-containing nerves of the rat uterus using retrograde tracing techniques combined with immunocytochemitry and denervation procedures. Neurosci. Lett., 51: 377-382.
  • Häppölä O., Łakomy M., Yanaihara N. (1990) Immunohistochemical localization of Met5-enke- phalin-Arg6-Gly7-Leus in the female genital organs and in the paracervical ganglion of the pig. Histochemistry, 93: 479-484.
  • Helén P., Panula P., Yang H.-Y.T., Rapoport S.I. 1984. Bombesin/gastrin-releasing peptide (GRP)- and Met5-enkephalin-Arg6-Gly7-Leu8-like immunoreactivities in small intensly fluorescent (SIF) cells and nerve fibres of rat sympathetic ganglia. J. Histochem. Cyto­chem., 32: 1131-1138.
  • Hill C.E., Hendry I.A. 1977. Development of neurons synthesizing noradrenaline and acetyl­choline in the superior cervical ganglion of the rat in vivo and in vitro. Neuroscience, 2: 741-749.
  • Holzer P. 1988. Local effector functions of capsaicin-sensitive sensory nerve endings: invo­lvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neu­roscience, 24: 739-768.
  • Hondeau E., Prud'homme M.-J., Rousseau A., Rousseau J.-P. 1995. Distribution of noradrenergic neurons in the female rat pelvic plexus and involvement in the genital tract innerva­tion. J. Autonom. Nerv. Syst., 54: 113-125.
  • Huang W.M., Gu J., Blank M.A., Allen J.M., Bloom S.R., Polak J.M., 1984. Peptide-immunore-active nerves in the mammalian female genital tract. Histochem. J., 16: 1297-1310.
  • Inyama C.O., Hacker G.W., Gu J., Dahl D., Bloom S.R., Polak J.M. 1985. Cytochemical relation­ships in the paracervical ganglion (Frankenhäuser) of rat studied by immunocytochemistry. Neurosci. Lett., 55: 311-316.
  • Inyama C.O., Wharton J., Davis C.J., Jackson R.H., Bloom S.R., Polak J.M. 1987. Distribution of vasoactive intestinal polypeptide binding sites in guinea pig genital tissues. Neurosci. Lett., 81: 11-116.
  • Jen P.Y.P, Dixon J.S., Gosling J.A. 1995. Development of peptide-containing nerves in the human fetal vas deferens and seminal vesicle. Brit. J. Urol., 75: 378-385.
  • Ju G., Hökfelt Т., Brodin E., Fahrenkrug J., Fischer J.A., Frey P., Elde R.P., Brown J.C. 1987. Primary sensory neurons of the rat showing calcitonin gene-related peptide immunoreactivity and their relation to substance P-, somatostatin-, galanin-, vasoactive intesti­nal polypeptide- and cholecystokinin-immunoreactive ganglion cells. Cell Tissue Res., 247: 417-431.
  • Kaleczyc J., Majewski M., Całka J., Łakomy M. 1993. Adrenergic innervation of the epididymis, vas deferens, accessory genital glands and urethra in the boar. Folia Histochem. Cyto., 31: 117-123.
  • Kaleczyc J., Timmermans J.-P., Majewski M., Łakomy M., Scheuermann D.W. 1994. NO-synthase- containing neurons of the pig inferior mesenteric ganglion, part of them innervating the ductus deferens. Acta Anat., 151: 62-67.
  • Kaleczyc J., Timmermans J.-P., Majewski M., Łakomy M., Scheuermann D.W. 1995. Distribution and immunohistochemical characteristics of neurons in the porcine caudal mesenteric gan­glion projecting to the vas deferens and seminal vesicle. Cell Tissue Res., 282: 59-68.
  • Kaleczyc J., Timmermans J.-P., Majewski M., Łakomy M., Scheuermann D.W. 1997. Immunohisto­chemical chracteristics of nerve fibres supplying the porcine vas deferens. A colocalization study. Histochem. Cell. Biol. 107: 229-241.
  • Kanerva Ł., Lietzen R., Teräväinen H. 1972. Catecholamines and cholinesterases in the parace­rvical (Frankenhäuser) ganglion of normal and pregnant rats. Acta Physiol. Scand., 86: 271-277.
  • Karhula Т., Panula P., Steinbusch H., Häppölä О. 1990. Immunohistochemical localization of 5-hydroxytryptamine, histamine and histidine decarboxylase in the rat major pelvic and coeliac-superior mesenteric ganglion. J. Auton. Nerv. Syst., 31: 91-100.
  • Karhula Т., Soinila S., Häppölä О. 1993. Comparison of immunohistochemical localization of [Met5] enkephalin-Arg6-Gly7-Leu8, vasoactive intestinal polypeptide and tyrosine hy­droxylase in the major pelvic ganglion of the rat. Neuroscience, 54: 253-261.
  • Karhula Т., Soinila S., Łakomy M., Majewski M., Kaleczyc J., Häppölä О. 1995. 5-hydroxytryptami- ne-immunoreactive nerve fibres in the rat and porcine prevertebral sympathetic gan­glia: effect of precursor loading and relation to catecholaminergic neurons. Neurosci. Lett., 194: 85-88.
  • Katayama Y., Nishi S. 1984. Sites and mechanisms of actions of enkephalin in the feline parasympathetic ganglion. J. Physiol. (London), 351: 111-121.
  • Kawatani M., Lowe I.P., Booth A.M., Backes M.G., Erdman S.L., de Groat W.C. 1983. The presence of leucine-enkephalin in the sacral preganglionic pathway to the urinary bladder of the cat. Neurosci. Lett., 39: 143-148.
  • Kawatani M., Rutigliano M., de Groat W.C. 1985. Vasoactive intestinal polypeptide produces ganglionic depolarization and facilitates muscarinic excitatory mechanisms in a sym­pathetic ganglion. Science, 229: 879-881.
  • Keast J.R. 1991. Patterns of co-existence of peptides and differences of nerve fibre types associated with noradrenergic and non-noradrenergic (putative cholinergic) neurons in the major pelvic ganglion of the male rat. Cell Tissue Res. 266: 405-415.
  • Keast J.R. 1992. Location and peptide content of pelvic neurons supplying the muscle and lamina propria of the rat vas deferens. J. Auton. Nerv. Syst., 40: 1-12.
  • Keast J.R. 1995. Visualization and immunohistochemical characterization of sympathetic and parasympathetic neurons in the male rat major pelvic ganglion. Neuroscience, 66: 655-662.
  • Keast J.R., Chiam H.-C. 1994. Selective association of nerve fibres immunoreactive for sub­stance P or bombesin with putative cholinergic neurons of the male rat major pelvic ganglion. Cell Tissue Res., 278: 589-594
  • Keast J.R., Booth A.M., de Groat W.C. 1989. Distribution of neurons in the major pelvic ganglion of the rat which supply the bladder, colon or penis. Cell Tissue Res., 256: 105-112.
  • Keast J.R., de Groat W.C. 1989. Immunohistochemical characterization of pelvic neuroní which project to the bladder, colon, or penis in rats. J. Comp. Neurol., 288: 387-400.
  • Keast J.R., Luckensmeyer G.B., Schemann M. 1995. All pelvic neurons in male rats contain immunoreactivity for the synthetic enzymes of either noradrenaline or acetylcholine. Neurosci. Lett., 196: 209-212
  • Koelle G.B., Friedenwald J.S. 1949. A histochemical method for localizing cholinesterase activity. Proc. Soc. Exp. Biol. Med.,70: 617-622.
  • Kolbeck S.C., Steers W.D. 1993. Origin of neurons supplying the vas deferens of the rat. J. Urol., 149: 918-921.
  • Konishi S., Tsunoo A., Otsuka M. 1979. Enkephalins presynaptically inhibit cholinergic neu­rotransmission in sympathetic ganglia. Nature (London), 282: 515-516.
  • Konishi S., Tsunoo A., Otsuka M. 1981. Enkephalin as a transmitter for presynaptic inhibi­tion in sympathetic ganglia. Nature, 294: 80-82.
  • Kujat R., Rose Ch., Wrobel K.Н. 1993. The innervation of the bovine ductus deferens: com­parison of a modified acetylcholinesterase-reaction with immunoreactivities of cholinacetyltransferase and panneuronal markers. Histochemistry, 99: 231-239.
  • Kummer W., Reinecke M., Heym C., Forssmann W.G. 1988. Distribution of opioid peptides func­tionally related to the cardiovascular system. W: Opioid peptides and blood pressure control. Stumpe K.О., Kraft K, Faden A.I. (edyt.) , Springer, Berlin, 5-12.
  • Kummer W., Fischer A., Mundel P., Mayer В., Нова В., Philippin В., Preissler U. 1992. Nitric oxide synthase in VIP-containing vasodilator nerve fibres in the guinea-pig. NeuroReport, 3: 653-655.
  • Lamano Carvalho T.L., Hodson N.P., Blank M.A., Watson P.F., Mulderry P.K., Bishop A.E., Gu J., Bloom S.R., Polak J.M. 1986. Occurrence, distribution and origin of peptide-containing nerves of guinea-pig and rat male genitalia and the effects of denervation on sperm characteristics. J. Anat., 149: 121-141.
  • Langley J.N., Anderson H.K. 1896. The innervation of the pelvic and adjoining viscera. VII. Anatomical observations. J. Physiol. (Lond), 20: 372-406.
  • Larsen J.-J., Ottesen В., Fahrenkrug J., Fahrenkrug L. 1981. Vasoactive intestinal polypeptide (VIP) in the male genitourinary tract, concentration and motor effect. Invest. Urol,, 19: 211-213.
  • Le Greves P., Nyberg F., Terenius L., Hökfelt Т. 1985. Calcitonin gene-related peptide is a potent inhibitor of substance P degradation. Eur. J. Pharmacol., 115: 309-311.
  • Luckensmeyer G.B., Keast J.R. 1995. Distribution and morphological characterization of vi- scerofugal projections from the large intestine to the inferior mesenteric and pelvic ganglia of the male rat. Neuroscience, 66: 663-671.
  • Lundberg J.M. 1991. Volume transmission by coreleased peptides in the autonomic nervous system. W: Fuxe K, Agnati L.F. (edyt.) Volume transmission in the brain: novel mecha­nism for neural transmission. Raven Press, New York, 425-432.
  • Lundberg J.M., Hua X.Y., Franco-Cereceda A. 1984. Effects of neuropeptide Y (NPY) on mecha­nical activity and neurotransmission in the heart, vas deferens and urinary bladder of the guinea-pig. Acta Physiol. Scand., 121: 325-332.
  • Lundberg J.M., Terenius L., Hökfelt Т., Goldstein M. 1983. High levels of neuropeptide Yin peripheral noradrenergic neurons in various mammals including man. Neurosci. Lett., 42: 167-172.
  • Lundberg J.M., Rudehill A., Sollevi A., Fried G., Wallin G. 1989a. Co-relese of neuropeptide Y and noradrenaline from pig spleen in vivo: Importance of cellular storage, nerve impul­se frequency and pattern, feedback regulation and resupply by axonal transport. Neuroscience, 28: 475-486.
  • Lundberg J.M., Rudehill A., Sollevi A., Hambergek B. 1989b. Evidence for co-transmitter role of neuropeptide Y in the pig spleen. Br. J. Pharmacol., 96: 675-687.
  • Lundberg J.M., Terenius L., Hökfelt Т., Martling C.R., Tatemoto K, Mutt V.A., Polak J., Bloom S., Goldstein M. 1982. Neuropeptide Y (NPY)-like immunoreactivity in peripheral noradre­nergic neurons and effects of NPY on sympathetic function. Acta Physiol. Scand., 116: 477-480.
  • Macrae I.M., Furness J.B., Costa M. 1986. Distribution of subgroups of noradrenaline neu­rons in the coeliac ganglion of the guinea-pig. Cell Tissue Res., 244: 173-180.
  • Maggi C.A., Meli A. 1988. The sensory-efferent function of capsaicin-sensitive sensory neu­rons. Gen. Pharmac., 19:1-43.
  • Majewski M., Heym C. 1991. The origin of ovarian neuropeptide Y (NPY)-immunoreactive nerve fibres from the inferior mesenteric ganglion in the pig. Cell Tissue Res., 266: 591-596.
  • Majewski M., Kaleczyc J., Sienkiewicz W., Łakomy M. 1995. Existence and co-existence of vasoac­tive substances in nerve fibres supplying the abdomino-pelvic arterial tree of the female pig and cow. Acta. Histochem. (Jena), 97: 235-256
  • Majewski M., Pidsudko Z., Kaleczyc J., Heym C., Łakomy M. 1996. Galanin, substance P and calcitonin ger related peptide are colocalized in some afferent neurons innervating the porcine ovary. Folia Histochem. Cyto., 34, Suppl. 1: 91-92.
  • Maruch S.M.G., Alves H.J., Machado C.R.S. 1989. Sympathetic innervation of the reproductive organs of the male opossum, Didelphis albiventris (Lund, 1841). Acta Anat. 134: 257-262.
  • Melander Т., Hökfelt Т., Rökaeus Å., Fahrenkrug J., Tatemoto K., Mutt V. 1985. Distribution of galanin-like immunoreactivity in the gastro-intestinal tract of several mammalian spe­cies. Cell Tissue Res., 239: 253-270.
  • Merighi A., Kar S., Gibson S.J., Ghidella S., Gobetto A., Peirone S.M., Polak J.M. 1990. The immunocytochemical distribution of seven peptides in the spinal cord and dorsal root ganglia of horse and pig. Anat. Embryol., 181: 271-280.
  • Minorsky N.M., Dail W.G. 1993. The effect of chronic decentralization on the enkephalin immunoreactive plexus around penile ganglionic neurons. J. Autonom. Nerv. Syst., 45: 215-223.
  • Mo N., Dun N.J. 1984. Vasoactive intestinal polypeptide facilitates muscarinic transmission in mammalian sympathetic ganglia. Neurosci. Lett., 52: 19-23.
  • Moncada S., Palmer R.M.J., Higgs E.A. 1989. Biosynthesis of nitric oxide from L-Arginine. A pathway for the regulation of cell function and communication. Biochem. Pharmacol., 38: 1709-1715.
  • Morris J.L. 1989. The cardiovascular system. W: The comparative physiology of regulatory peptides. Holmgren S. (edyt.). Chapman i Hall, New York, 272-307.
  • Morris J.L. 1993. Co-transmission from autonomic vasodilator neurons supplying the gui­nea pig uterine artery. J. Autonom. Nerv. Syst., 42: 11-22.
  • Morris J.L., Gibbins I.A. 1987. Neuronal colocalisation of peptides, catecholamines, and catecholamine-synthesising enzymes in guinea pig paracervical ganglia. J. Neurosci., 7: 3117-3130.
  • Morris J.L., Gibbins I.A. 1992. Co-transmission and neuromodulation. W: Autonomic neu- roeffector mechanisms. Burnstock G., Hoyle C.H.V. (edyt.). Harwood Academic Publi­shers, Chur, 33-119
  • Nadelhaft I., Vera P.L. 1991. Neurons labelled after the application of tracer to the distal stump of the transected hypogastric nerve in the rat. J. Autonom. Nerv. Syst., 36: 87-96.
  • Nyberg F., Le Greves P., Terenius L. 1988. Modulation of endopeptidase activity by calcitonin gene-related peptide: a mechanism affecting substance P action? Biochimie, 70: 65-68.
  • Ohhanishi Т., Jacobowitz D.M. 1983. The effects of pancreatic polypeptides and neuropeptide Y on the rat vas deferens. Peptides, 4: 381-386.
  • Ohhanishi Т., Jacobowitz D.M. 1985. Effect of calcitonin gene-related peptide on the neuroeffec- tor mechanism of sympathetic nerve terminals in rat vas deferens. Peptides, 4: 987-991.
  • Olgart L., Gazelius В., Brodin E., Nilsson G. 1977. Release of substance P-like immunoreactivity from the dental pulp. Acta Physiol. Scand., 101: 510-512.
  • Ottesen В., Gram B.R., Fahrenkrug J. 1983. Neuropeptides in the female genital tract: effect on vascular and non-vascular smooth muscle. Peptides, 4: 387-392.
  • Owman C. 1988. Autonomic innervatin of the cardiovascular system. W: Handbook of che­mical neuroanatomy: The peripheral nervous system. Björklund A., Hökfelt Т., Owman С. (edyt.). Elsevier, Amsterdam, 327-289.
  • Owman C., Sjöstrand N.O. 1965. Short adrenergic neurons and catecholamine-containing cells in vas deferens and accessory male genital glands of different mammals. Z. Zell- forsch., 66: 300-320.
  • Owman С., Sjöstrand N.O. 1966. On short adrenergic neurons in the accessory male genital organs of the bull. Experientia, 22: 759-761.
  • Owman C., Stjernquist M. 1988. Origin, distribution, and functional aspects of aminergic and peptidergic nerves in the male and female reproductive tracts. W: Handbook of chemi­cal neuroanatomy: The peripheral nervous system. Björklund Т., Hökfelt Т., Owman С. (edyt.). Elsevier, Amsterdam, 1: 445-544.
  • Owman C., Rosengren E., Sjöberg N.O. 1966. Origin of the adrenergic innervation to the female genital tract of the rabbit. Life Sci., 5: 1389-1396.
  • Palmer J.M., Schemann M., Tamura K., Wood J.D. 1986. Galanin mimics slow sympathetic inhibition in myenteric neurons. Eur. J. Pharmacol., 124: 379-380.
  • Papka R.E. 1990. Some nerve endings in the female rat pelvic paracervical autonomic ganglia and varicosities in the uterus contain calcitonin gene-related peptide and ori­ginate from dorsal root ganglia. Neuroscience 39: 459-470.
  • Papka R.E., McNeill D.L. 1992. Coexistence of calcitonin gene-related peptide and galanin immunoreactivity in female rat pelvic and lumbosacral dorsal root ganglia. Peptides, 13: 761-767
  • Papka RE, Traurig H., Urban L. 1985a. Neuropeptides in the paracervical ganglion of the female rat. Anat. Ree., 211: 146A-147A.
  • Papka R.E., Traurig H.H., Wekstein M. 1985b. Localization of peptides in nerve terminals in the paracervical ganglion of the rat by light and electron microscopic immunohistochemistry: enkephalin and atrial natriuretic factor. Neurosci. Lett., 61: 285-290.
  • Papka R.E., Traurig H.H., Klenn P. 1987. Paracervical ganglia of the female rat: Histochemi­stry and immunohistochemistry of neurons, SIF cells, and nerve terminals. Am. J. Anat. 179: 243-257.
  • Pellegrini A., Soldani P., Breschi M.C., Martinotti E., Paparelli A. 1990. Adrenergic innervation of the ductus deferens in young and aging rats: a morpho-functional investigation. Acta Histochem., 89: 67-74.
  • Pick J. 1970. The autonomic nervous system. Lippincott J.B. (edyt.), Philadelphia-Toronto.
  • Polak J.M., Bloom S.R. 1984. Localisation and measurement of VIP in the genitourinary system of man and animals. Peptides, 5: 225-230.
  • Properzi G., Cordeschi G., Francavilla S. 1992. Postnatal development and distribution of peptide-containing nerves in the genital system of the male rat. Histochemistry 97: 61-68.
  • Prosdocimi M., Finesso М., Gorio A. 1986. Enkephalin modulation of neural transmission in the cat stellate ganglion: Pharmacological actions of exogenous opiates. J. Autonom. Nerv. Syst., 17: 217-230.
  • Purinton P.T., Fletcher T.F., Bradley W.E. 1973. Gross and light microscopic features of the pelvic plexus in the rat. Anat. Rec., 175: 697-705.
  • Quinlan D.M., Nelson R.J., Partin A.W., Mostwin J.L., Walsh P.C. 1989. The rat as a model for the study of penile erection. J. Urol., 141: 656-661.
  • Risley P.L., Skrepetos C.N. 1964. Histochemical distribution of cholinesterases in the testis, epididymis and vas deferens of the rat. Anat. Rec., 148: 231-249.
  • Rökaeus Å. 1987. Galanin: a newly isolated biologically active neuropeptide. Trends Neurosci., 10: 158-164.
  • Ronai A.Z., Harsing L.G., Berzetei I.P., Bajusz S., Visi E.S. 1982. Met5-enkephalin-Arg-Phe acts on vascular opiate receptor. Eur. J. Pharmacol., 79: 337-338.
  • Salt Т.Е., Hill R.G. 1983. Neurotransmitter candidates of somatosensory primary afferent fibres. Neuroscience.lO: 1083-1103.
  • Santicioli P., Maggi C.A., Geppetti P., Del Bianco E. Theodorsson E., Meli A. 1988. Release of calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) from organs of the genitourinary tract in rats. Neurosci. Lett., 92: 197-201.
  • Sasek C.A., Seybold V.S., Elde R.P. 1984. The immunohistochemical localization of nine peptides in the sacral parasympathetic nucleus and the dorsal gray commissure in rat spinal cord. Neuroscience, 12: 855-873.
  • Scarfone E., Dememes D., Jahn R., DeCamilli P., Sans A. 1988. Secretory function of the vestibu­lar nerve calyx suggested by presence of vesicles, synapsin I, and synaptophysin. J. Neurosci., 8: 4640-4645.
  • Schirar A., Giuliano F., Rampin O., Rousseau J.-P. 1994. A large proportion of pelvic neurons innervating the corpora cavernosa of the rat penis exhibit NADPH-diaphorase activity. Cell Tissue Res. 278: 517-525.
  • Senba E., Tohyama M. 1988. Calcitonin gene-related peptide containing autonomic efferent pathways to the pelvic ganglia of the rat. Brain. Res., 449: 386-390.
  • Setchell B.P., Maddocks S., Brooks D.E. 1994. Innervation. W: Anatomy, vasculature, inne­rvation, and fluids of the male reproductive tract. Knobil E., Neil J.D. (edyt.). Raven Press, Ltd., New York, 1108-1116.
  • Sjöstrand N.O. 1965. The adrenergic innervation of the vas deferens and the accessory male genital glands. Acta Physiol. Scand. 65 (Supl. 257): 1-82.
  • Song Z.M., Brookes S.J.H., Gibbins I.L., Costa M. 1994. NADPH-diaphorase and other neuro­nal markers in nerves and ganglia supplying the guinea-pig vas deferens. J. Auton. Nerv. Syst. 48: 31-43.
  • Stjernquist M., Håkanson R., Leander S., Owman C., Sundler F., Uddman R. 1983. Immunohisto­chemical localization of substance P, vasoactive intestinal polypeptide and gastrin-releasing peptide in the vas deferens and seminal vesicle, and the effect of these and eight other neuropeptides on resting tension and neurally evoked contractile activity. Reg. Pept., 7:67-86.
  • Stjernquist M., Owman C., Sjöberg N.O., Sundler F. 1987. Coexistence and cooperation between neuropeptide Y and norepinephrine in nerve fibres of guinea-pig vas deferens and seminal vesicle. Biol. Reprod., 36:149-155.
  • Stjernquist M., Ekbald E., Owman C., Sundler F. 1988. Immunocytochemical localization of galanin in the rat male and female genital tracts and motor effects in vitro. Reg. Pept., 20: 335-343.
  • Swindle M.M., Moody D.C., Philips L.D. 1992. Swine as models in biomedical research. Iowa State University Press, Ames.
  • Timmermans J.-P., Barbiers M., Scheuermann D.W., Stalk W., Adriansen D., De Groadt-Lasseel M.H.A. 1993. Occurrence, distribution and neurochemical features of small intestinal neurons projecting to the cranial mesenteric ganglion in the pig. Cell Tissue Res., 272: 49-58.
  • Tramu G., Pillez A., Leonardelli J. 1978. An efficient method of antibody elution for the successive simultaneous localization of two antigens by immunocytochemistry. J. Histochem. Cytochem. 26: 322-324.
  • Tsaknakis A. 1971. Morphological studies of the pelvic plexus of the pig. Zbt. Vet. Med A., 18: 310-324.
  • Tsunoo A., Konishi S., Otsuka M. 1982. Substance P as an excitatory transmitter of primary afferent neurons in guinea-pig sympathetic ganglia. Neuroscience, 7: 2025-2037.
  • Vaalasti A., Hervonen A. 1980. Autonomic innervation of the human prostate. Invest. Urol., 17: 293-297
  • Vaalasti A., Tainio H., Pelto-Huikko M., Hervonen A. 1986. Light and electron microscope de­monstration of VIP- and enkephalin-immunoreactive nerves in the human male genito­urinary tract. Anat. Rec., 215: 21-27.
  • Vincent S.R., Dalsgaard C.-J., Schultzberg M., Hökfelt Т., Christensson I., Terenius L. 1984. Dy- norphin-immunoreactive neurons in the autonomic nervous system. Neuroscience, 11: 973-987.
  • Vizzard M.A., Erdman S.L., Förstermann U., de Groat W.C. 1994. Differential distribution of nitric oxide synthase in neural pathways to the urogenital organs (urethra, penis, urinary bladder) of the rat. Brain Res. 646: 279-191.
  • Wang B.R., Senba E., Tohyama M. 1990. Met5-enkephalin-Arg6-Gly7-Leu8-like immunoreacti- vity in the pelvic ganglion of the male rat: a light and electron microscopic study. J. Comp. Neurol. 293: 26-38.
  • Warburton A.L., Santer R.M. 1993. Localisation of NADPH-diaphorase and acetylcholineste­rase activities and of tyrosine hydroxylase and neuropeptide-Y immunoreactivity in neurons of the hypogastric ganglion of young adult and aged rats. J. Auton. Nerv. Syst., 45: 155-163.
  • Watanabe H. 1971. Adrenergic nerve elements in the hypogastric ganglion of the guinea-pig. Am. J. Anat., 130: 305-330.
  • Wąsowicz K. 1994. Lokalizacja i immunohistochemiczna charakterystyka neuronów uner­wiających macicę świni. Praca doktorska, ART Olsztyn.
  • Wouters W., van den Bercken J. 1979. Hyperpolarization and depression of slow synaptic inhibition by enkephalin in frog sympathetic ganglion. Nature, 277: 53-54.
  • Woźniak W., Skowrońska U. 1967. Comparative anatomy of pelvic plexus in cat, dog, rabbit, macaque and man. Anat. Anz. Bd., 120: 457-473.
  • Yamamoto M., Kondo H. 1988. Occurrence of a dense plexus of sensory nerve fibers immuno- reactive to calcitonin gene-related peptide in the cauda epididymidis of rats. Acta Anat., 132: 169-176.
  • Yau W.M., Dorsett J.A., Youther M.L. 1986. Evidence for galanin as an inhibitory neuropep­tide on myenteric cholinergic neurons in the guinea pig small intestine. Neurosci. Lett., 72: 305-308.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-4b9b2606-6ad7-4f44-9d52-32a71d76f11c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.