PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 52 | 1 |

Tytuł artykułu

Bacterial chromosome segregation

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In most bacteria two vital processes of the cell cycle: DNA replication and chromosome segregation overlap temporally. The action of replication machinery in a fixed location in the cell leads to the duplication of oriC regions, their rapid separation to the opposite halves of the cell and the duplicated chromosomes gradually moving to the same locations prior to cell division. Numerous proteins are implicated in co-replicational DNA segregation and they will be characterized in this review. The proteins SeqA, SMC/MukB, MinCDE, MreB/Mbl, RacA, FtsK/SpoIIIE playing different roles in bacterial cells are also involved in chromosome segregation. The chromosomally encoded ParAB homologs of active partitioning proteins of low-copy number plasmids are also players, not always indispensable, in the segregation of bacterial chromosomes.

Wydawca

-

Rocznik

Tom

52

Numer

1

Opis fizyczny

p.1-34,fig.,ref.

Twórcy

  • Polish Academy of Sciences, A.Pawinskiego 5A, 02-106 Warsaw, Poland

Bibliografia

  • Adler HI, Fisher WD, Cohen A, Hardigree AA. (1967) Miniature Escherichia coli cells deficient in DNA. Proc Natl Acad Sci USA.; 57: 321–6.
  • Aussel L, Barre F-X, Aroyo M, Stasiak A, Stasiak AZ, Sherratt D. (2002) FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell.; 108: 195–205.
  • Baker TA, Bell SP. (1998) Polymerases and the replisome: machines within machines. Cell.; 92: 295–305.
  • Barre FX, Soballe B, Michel B, Aroyo M, Robertson M, Sherrat D. (2001) Circles: the replication-recombination-chromosome segregation connection. Proc Natl Acad Sci USA.; 98: 8189–95.
  • Bartosik AA, Lasocki K, Mierzejewska J, Thomas CM, Jagura-Burdzy G. (2004) ParB of Pseudomonas aeruginosa: interactions with its partner ParA and its target parS and specificeffects on bacterial growth. J Bacteriol.; 186: 6983–98.
  • Bath J, Wu LJ, Errington J, Wang JC. (2000) Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science.; 290: 995–7.
  • Ben-Yehuda S, Rudner DZ, Losick R. (2003) RacA, a bacterial protein that anchors chromosomes to the cell poles. Science.; 299: 532–6.
  • Bi E, Lutkenhaus J. (1991) FtsZ ring structure associated with division in Escherichia coli. Nature.; 354: 161–4.
  • Biek DP, Shi J. (1994) A single 43 bp repeat of plasmid mini-F is sufficient to allow assembly of a functional nucleoprotein partition complex. Proc Natl Acad Sci USA.; 91: 8027–31.
  • Biek DP, Strings J. (1995) Partition functions of mini-F affect plasmid DNA topology in Escherichia coli. J Mol Biol.; 290: 388–400.
  • Bignell CR, Haines AS, Khare D, Thomas CM. (1999) Effect of growth rate and incC mutation on symmetric plasmid distribution by the IncP-1 partitioning apparatus. Mol Microbiol.; 34: 205–16.
  • Blakely G, Colloms S, May G, Bruke M, Sherratt DJ. (1991) Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol.; 3: 789–98.
  • Bouet JY, Funnell BE. (1999) P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities. EMBO J.; 18: 1415–24.
  • Bouet JY, Surtees JA, Funnell BE. (2000) Stoichiometry of P1 plasmid partition complexes. J Biol Chem.; 275: 8213–9.
  • Boye E, Lobner-Olesen A, Skarstad K. (2000) Limiting DNA replication to once and only once. EMBO Rep.; 1: 479–83.
  • Brendler T, Sawitzke J, Sergueev K, Austin S. (2000) A case for sliding SeqA tracts at anchored replication forks during E. coli chromosome replication and segregation. EMBO J.; 19: 6249–58.
  • Britton RA, Lin DC-H, Grossman AD. (1998) Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes Dev.; 12: 1254–9.
  • Brok P, Sander C, Valencia A. (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci USA.; 89: 7290–4.
  • Buddelmeijer N, Beckwith J. (2002) Assembly of division proteins at the E. coli cell center. Curr Opin Microbiol.; 5: 553–7.
  • Davey MJ, Funnell BE. (1994) The P1 plasmid partition protein ParA. A role for ATP in site-specific DNMA binding. J Biol Chem.; 269: 29908–13.
  • Davis MA, Austin SJ. (1988) Recognition of the P1 plasmid centromere analog involves binding of the ParB protein and is modified by a specific host factor. EMBO J.; 7: 1881–8.
  • Davis MA, Martin KA, Austin SJ. (1990) Specificity switch of the P1 plasmid centromere-like site. EMBO J.; 9: 991–8.
  • Davis MA, Martin KA, Austin SJ. (1992) Biochemical activities of the ParA partition protein of the P1 plasmid. Mol Microbiol.; 6: 1141–7.
  • de Boer PAJ, Crossley RE, Rothfield LI. (1989) A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell.; 56: 641–9.
  • den Blaauwen T, Lindqvist A, Lowe J, Nanninga N. (2001) Distribution of the Escherichia coli structural maintenance of chromosomes (SMC)-like protein MukB in the cell. Mol Microbiol.; 42: 1179–88.
  • Dingman CW. (1974) Bidirectional chromosome replication: some topological considerations. J Theor Biol.; 43: 187–95.
  • Donachie WD. (2001) Co-ordinate regulation of the Escherichia coli cell cycle or The cloud of unknowing. Mol Microbiol.; 40: 779–85.
  • Donachie WD, Blakelys GW. (2003) Coupling the initiation of chromosome replication to cell size in Eschericha coli. Curr Opin Microbiol.; 6: 146–50.
  • Easter J Jr, Gober JW. (2002) ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Mol Cell.; 10: 427–34.
  • Ebersbach G, Gerdes K. (2004) Bacterial mitosis: partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell. Mol Microbiol.; 52: 385–98.
  • Edwards DH, Errington J. (1997) The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of the cell division. Mol Microbiol.; 24: 905–15.
  • Erdmann N, Petroff T, Funnell BE. (1999) Intracellular localization of P1 ParB protein depends on ParA and parS. Proc Natl Acad Sci USA.; 96: 14905–10.
  • Errington J, Bath J, Wu LJ. (2001) DNA transport in bacteria. Nat Rev Mol Cell Biol.; 2: 538–45.
  • Espeli O, Levine C, Hassing H, Marians KJ. (2003a) Temporal regulation of topoisomerase IV activity in E. coli. Mol Cell.; 11: 189–201.
  • Espeli O, Lee C, Marians KJ. (2003b) A physical and functional interaction between Escherichia coli FtsK and topoisomerase IV. J Biol Chem.; 278: 44639–44.
  • Espeli O, Nurse P, Levine C, Lee C, Marians KJ. (2003c) SetB: an integral membrane protein that affects chromosome segregation in Escherichia coli. Mol Microbiol.; 50: 495–509.
  • Figge RM, Easter J Jr, Gober JW. (2003) Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus. Mol Microbiol.; 47: 1225–37.
  • Friedman SA, Austin SJ. (1988) The P1 plasmid-partition system synthesizes two essential proteins from an autoregulated operon. Plasmid.; 19: 103–12.
  • Funnell BE. (1988) Participation of Escherichia coli integration host factor in the P1 plasmid partition system. Proc Natl Acad Sci USA.; 85: 6657–61.
  • Funnell BE. (1991) The P1 plasmid partition complex at parS. J Biol Chem.; 266: 14328–37.
  • Gal-Mor O, Borovok I, Av-Gay Y, Cohen G, Aharonowitz Y. (1998) Gene organization in the trxA/B-oriC region of the Streptomyces coelicolor chromosome and comparison with other eubacteria. Gene.; 217: 83–90.
  • Gerdes K, Moller-Jensen J, Jensen RB. (2000) Plasmid and chromosome partitioning: suprises from phylogeny. Mol Microbiol.; 37: 455–66.
  • Glaser P, Sharpe ME, Raether B, Perego M, Ohlsen K, Errington F. (1997) Dynamic, mitotic- like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev.; 11: 1160–8.
  • Gober JW, Marques MV. (1995) Regulation of cellular differentiation in Caulobacter crescentus. Microbiol Rev.; 59: 31–47.
  • Godfrin-Estevenon A-M, Pasta F, Lane D. (2002) The parAB gene products of Pseudomonas putida exhibit partition activity in both P. putida and Escherichia coli. Mol Microbiol.; 43: 39–49.
  • Gordon GS, Sitnikov D, Webb CD, Teleman A, Straight A, Losick R, et al. (1997) Chromosome and low-copy-plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell.; 90: 1113–21.
  • Graumann PL. (2000) Bacillus subtilis SMC is required for proper arrangement of the chromosome and for efficient segregation of replication termini but not for bipolar movement of newly duplicated origin regions. J Bacteriol.; 182: 6463–71.
  • Graumann PL. (2001) SMC proteins in bacteria: condensation motors for chromosome segregation? Biochimie.; 83: 53–9.
  • Hao J-J, Yarmolinsky M. (2002) Effects of the P1 plasmid centromere on expression of P1 partition genes. J Bacteriol.; 184: 4857–67.
  • Harry EJ. (2001) Bacterial cell division: regulating Z-ring formation. Mol Microbiol.; 40: 795–803.
  • Helmstetter CE. (1996) In Escherichia coli and Salmonella thyphimurium: Cellular and Molecular Biology. Neidhardt FC. et al., ed, pp 1627–39. ASM, Washington DC.
  • Herrmann U, Soppa J. (2002) Cell cycle-dependent expression of an essential SMC-like protein and dynamic chromosome localization in the archaeon Halobacterium salinarum. Mol Microbiol.; 46: 395–409.
  • Hill TM. (1996) Features of the chromosomal terminus region. In Escherichia coli and Salmonella thyphimurium: Cellular and Molecular Biology. Neidhardt FC. et al. ed. pp 1602–14. ASM, Washington DC.
  • Hiraga S, Niki H, Ogura T, Ichinose C, Mori H, Ezaki B, Jaffe A. (1989) Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells. J Bacteriol.; 171: 1496–505.
  • Hiraga S, Ichinose C, Onogi T, Niki H, Yamazoe M. (2000) Bidirectional migration of SeqA-bound hemimethylated DNA clusters and pairing of oriC copies in Escherichia coli. Genes Cells.; 5: 327–41.
  • Hirano T. (2000) Chromosome cohesion, condensation, and separation. Annu Rev Biochem.; 69: 115–44.
  • Hirano T, Mitchison TJ, Swedlow JR. (1995) The SMC family: from chromosome condensation to dosage compensation. Curr Opin Cell Biol.; 7: 329–36.
  • Ho TQ, Zhong Z, Aung S, Pogliano J. (2002) Compatible bacterial plasmids are targeted to independent cellular locations in Escherichia coli. EMBO J.; 21: 1864–72.
  • Hoch JA. (1993) Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu Rev Microbiol.; 47: 441–65.
  • Holmes VF, Cozzarelli NR. (2000) Closing the ring: links between SMC proteins and chromosome partitioning, condensation, and supercoiling. Proc Natl Acad Sci USA.; 97: 1322–4.
  • Hu Z, Saez C, Lutkenhaus J. (2003) Recruitment of MinC, an inhibitor of Z-ring formation, to the membrane in Escherichia coli: role of MinD and MinE. J Bacteriol.; 185: 196–203.
  • Ireton K, Grossman AD. (1992) Interactions among mutations that cause altered timing of gene expression during sporulation in Bacillus subtilis. J Bacteriol.; 174: 3185–95.
  • Ireton K, Grossman AD. (1994) A developmental checkpoint couples the initiation of sporulation to DNA replication in Bacillus subtilis. EMBO J.; 13: 1566–73.
  • Ireton K, Gunther NW, Grossman, AD. (1994) spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J Bacteriol.; 176: 5320–9.
  • Jagura-Burdzy G, Kostelidou K, Pole J, Khare D, Jones A, Williams DR, Thomas CM. (1999a) IncC of broad-host-range plasmid RK2 modulates KorB transcriptional repressor activity in vivo and operator binding in vitro. J Bacteriol.; 181: 2807–15.
  • Jagura-Burdzy G, Macartney DP, Zatyka M, Cunliffe L, Cooke D, Huggins C, Westblade L, Khanim F, Thomas CM. (1999b) Repression at a distance by the global regulator KorB of promiscuous IncP plasmids. Mol Microbiol.; 32: 519–32.
  • Jakimowicz D, Chater K, Zakrzewska-Czerwińska J. (2002) The ParB protein of Streptomyces coelicolor A3(2) recognizes a cluster of parS sequences within the origin- proximal region of the linear chromosome. Mol Microbiol.; 45: 1365–77.
  • Jensen RB, Gerdes K. (1997) Partitioning of plasmid R1. The ParM protein exhibits ATPase activity and interacts with the centromere-like ParR-parC complex. J Mol Biol.; 269: 505–13.
  • Jensen RB, Shapiro L. (1999) The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. Proc Natl Acad Sci USA.; 96: 10661–6.
  • Jones LJF, Carballido-Lopez R, Errington J. (2001) Control of cell shape in bacteria: heli- cal, actin-like filaments in Bacillus subtilis. Cell.; 104: 913–22.
  • Jumas-Bilak E, Milchaux-Charachon S, Bourg G, O’Callaghan D, Ramuz M. (1998) Differences in chromosome number and genome rearrangements in the genus Brucella. Mol Microbiol.; 27: 99–106.
  • Kadoya R, Hassan AKM, Kasahara Y, Ogasawara N, Moriya S. (2002) Two separate
  • DNA sequences within oriC participate in accurate chromosome segregation in Bacillus subtilis. Mol Microbiol.; 45: 73–87.
  • Kamada K, Horiuchi T, Ohsumi K, Shimamoto M, Morikawa K. (1996) Structure of a replication terminator protein complexed with DNA. Nature.; 383: 598–603.
  • Kato J, Nishimura Y, Imamura R, Niki H, Hiraga S, Suzuki H. (1990) New topoisomerase essential for chromosome segregation in E. coli. Cell.; 63: 393–404.
  • Kelman Z, O’Donnell M. (1995) DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. Annu Rev Biochem.; 64: 171–200.
  • Kim H-J, Calcut MJ, Schmidt FJ, Chater KF. (2000) Partitioning of the linear chromosome during sporulation of Streptomyces coelicolor A3(2) involves an oriC-linked parAB locus. J Bacteriol.; 182: 1313–20.
  • Kolsto A-B. (1999) Time for a fresh look at the bacterial chromosome. Trends Microbiol.; 7: 223–6.
  • Kruse T, Moller-Jensen J, Lobner-Olesen A, Gerdes K. (2003) Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J.; 22: 5283–92.
  • Kurokawa K, Nishida S, Emoto A, Sekimizu K, Katayama T. (1999) Replication cycle-coordinated change of the adenine nucleotide- bound forms of DnaA protein in Escherichia coli. EMBO J.; 18: 6642–52.
  • Kusukawa N, Mori H, Kondo A, Hiraga S. (1987) Partitioning of the F plasmid: overproduction of an essential protein for partition inhibits plasmid maintenance. Mol Gen Genet.; 208: 365–72.
  • Lau IF, Filipe SR, Soballe B, Okstad O-A, Barre F-X, Sherratt DJ. (2003) Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol Microbiol.; 49: 731–43.
  • Lee PS, Lin DC-H, Moriya S, Grossman AD. (2003) Effects of the chromosome partitioning protein Spo0J (ParB) on oriC positioning and replication initiation in Bacillus subtilis. J Bacteriol.; 185: 1326–37.
  • Lemon KP, Grossman AD. (1998) Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science.; 282: 1516–9.
  • Lemon KP, Grossman AD. (2000) Movement of replicating DNA through a stationary replisome. Mol Cell.; 6: 1321–30.
  • Lemon KP, Grossman AD. (2001) The extrusion- capture model for chromosome partitioning in bacteria. Genes Dev.; 15: 2031–41.
  • Lemonnier M, Bouet JY, Libante V, Lane D. (2000) Disruption of the F plasmid partition complex in vivo by partition protein SopA. Mol Microbiol.; 38: 493–505.
  • Leonard SC, Grimwade JE. (2005) Building a bacterial orisome: emergence of new regulatory features for replication origin unwinding. Mol Microbiol.; 55: 978–85.
  • Levin PA, Grossman AD. (1998) Cell cycle and sporulation in Bacillus subtilis. Curr Opin Microbiol.; 1: 630–5.
  • Lewis PJ, Errington J. (1997) Direct evidence for active segregation of oriC regions of the Bacillus subtilis chromosome and co-localization with the Spo0J partitioning protein. Mol Microbiol.; 25: 945–54.
  • Lewis RA, Bignell CR, Zeng W, Jones AC, Thomas CM. (2002) Chromosome loss from par mutants of Pseudomonas putida depends on growth medium and phase of growth. Microbiology.; 148: 537–48.
  • Li Y, Austin S. (2002a) The P1 plasmid is segregated to daughter cells by a “capture and ejection” mechanism coordinated with Escherichia coli cell division. Mol Microbiol.; 46: 63–74.
  • Li Y, Austin S. (2002b) The P1 plasmid in action: time-lapse photomicroscopy reveals some unexpected aspects of plasmid partition. Plasmid.; 48: 174–8.
  • Li Y, Sergueev K, Austin S. (2002) The segregation of the Escherichia coli origin and terminus of replication. Mol Microbiol.; 46: 985–95.
  • Li Y, Youngren B, Sergueev K, Austin S. (2003) Segregation of the Escherichia coli chromosome terminus. Mol Microbiol.; 50: 825–34.
  • Lin DC-H, Grossman AD. (1998) Identification and characterization of a bacterial chromosome partitioning site. Cell.; 92: 675–85.
  • Lin DC-H, Levin PA, Grossman AD. (1997) Bipolar localization of a chromosome partition protein in Bacillus subtilis. Proc Natl Acad Sci USA.; 94: 4721–6.
  • Lu M, Campbell JL, Boye E, Kleckner N. (1994) SeqA: a negative modulator of replication initiation in E. coli. Cell.; 77: 413–26.
  • Lu C, Reedy M, Erickson HP. (2000) Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J Bacteriol.; 182: 164–70.
  • Lukaszewicz M, Kostelidou K, Bartosik AA, Cooke GD, Thomas CM, Jagura-Burdzy G. (2002) Functional dissection of the ParB homologue (KorB) from IncP-1 plasmid RK2. Nucleic Acids Res.; 30: 1046–55.
  • Lutkenhaus J. (2002) Dynamic proteins in bacteria. Curr Opin Microbiol.; 5: 548–52.
  • Lynch AS, Wang JC. (1995) Sop-protein mediated silencing of genes linked to the sopC locus of Escherichia coli F plasmid. Proc Natl Acad Sci USA.; 92: 1896–900.
  • Makise M, Mima S, Katsu T, Tsuchiya T, Mizushima T. (2002) Acidic phospholipids inhibit the DNA-binding activity of DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli. Mol Microbiol.; 46: 245–56.
  • Margolin W. (2000) Themes and variations in prokaryotic cell division. FEMS Microbiol Rev.; 24: 531–48.
  • Marston AL, Errington J. (1999) Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol Cell.; 4: 673–82.
  • Marston AL, Thomaides HB, Edwards DH, Sharpe ME, Errington J. (1998) Polar localisation of the MinD protein of Bacillus subtilis and its role in selection of the midcell division site. Genes Dev.; 12: 3419–30.
  • McGarry KC, Ryan VT, Grimwade JE, Leonard AC. (2004) Two discriminatory binding sites in the Escherichia coli replication origin are required for DNA strand opening by initiator DnaA-ATP. Proc Natl Acad Sci USA.; 101: 2811–6.
  • Melby TE, Ciampaglio CN, Briscoe G, Erickson HP. (1998) The symmetrical structure of structural maintenance of chromosomes SMC and MukB proteins: long, antiparallel coiled-coils, folded at a flexible hinge. J Cell Biol.; 142: 1595–604.
  • Messer W. (2002) The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol Rev.; 26: 355–74.
  • Mohl DA, Gober JW. (1997) Cell-cycle dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell.; 88: 675–84.
  • Mohl DA, Easter J Jr, Gober JW. (2001) The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol Microbiol.; 42: 741–55.
  • Moller-Jensen J, Jensen RB, Lowe J, Gerdes K. (2002) Prokaryotic DNA segregation by an actin-like filament. EMBO J.; 21: 3119–27.
  • Moller-Jensen J, Borch J, Dam M, Jensen RB, Roepstorff P, Gerdes K. (2003) Bacterial mitosis: ParM of plasmid R1 moves plasmid DNA by actin-like insertional polymerization mechanism. Mol Cell.; 12: 1477–87.
  • Mori H, Kondo A, Ohshima A, Ogura T, Hiraga S. (1986) Structure and function of the F plasmid genes essential for partitioning. J Mol Biol.; 192: 1–15.
  • Moriya S, Tsujikawa E, Hassan AK, Asai K, Kodama T, Ogasawara N. (1998) A Bacillus subtilis gene — encoding protein homologous to eukaryotic SMC motor protein is necessary for chromosome partition. Mol Microbiol.; 29: 179–87.
  • Motallebi-Veshareh M, Rouch DA, Thomas CM. (1990) A family of ATPases involved in active partitioning of diverse bacterial plasmids. Mol Microbiol.; 4: 1455–63.
  • Mulder E, El’Bouhali M, Pas E, Woldringh CL. (1990) The Escherichia coli minB mutation resembles gyrB in defective nucleoid segregation and decreased negative supercoiling of plasmids. Mol Gen Genet.; 221: 87–93.
  • Niki H, Hiraga S. (1997) Subcellular distribution of actively partitioning F plasmid during the cell division cycle in E. coli. Cell.; 90: 951–7.
  • Niki H, Jaffe A, Imamura R, Ogura T, Hiraga S. (1991) The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partition of E. Coli. EMBO J.; 10: 183–93.
  • Niki H, Imamura R, Kitaoka M, Yamanaka K, Ogura T, Hiraga S. (1992) E. coli MukB protein involved in chromosome partition forms a homodimer with a rod-and-hinge structure having DNA binding and ATP/GTP binding activities. EMBO J.; 11: 5101–9.
  • Nishida S, Fujimitsu K, Sekimizu K, Ohmura T, Ueda T, Katayama T. (2002) A nucleotide switch in the Escherichia coli DnaA protein initiates chromosomal replication: evidence from a mutant DnaA protein defective in regulatory ATP hydrolysis in vitro and in vivo. J Biol Chem.; 277: 14986–95.
  • Ogasawara N, Yoshikawa H. (1992) Genes and their organization in the replication origin region of the bacterial chromosome. Mol Microbiol.; 6: 629–34.
  • Ogden GB, Pratt MJ, Schaechter M. (1988) The replicative origin of the E. coli chromosome binds to cell membranes only when hemimethylated. Cell.; 54: 127–35.
  • Ogura Y, Ogasawara N, Harry EJ, Moriya S. (2003) Increasing the ratio of Soj to Spo0J promotes replication initiation in Bacillus subtilis. J Bacteriol.; 185: 6316–24.
  • Potrykus K, Barańska S, Wegrzyn A, Wegrzyn G. (2002) Composition of the plasmid heritable replication complex. Biochem J.; 364: 857–62.
  • Quardokus EM, Din N, Brun YV. (2001) Cell cycle and positional constraints on FtsZ localization and the initiation of cell division in Caulobacter crescentus. Mol Microbiol.; 39: 949–59.
  • Quisel JD, Grossman AD. (2000) Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB). J Bacteriol.; 182: 3446–51.
  • Ravin NV, Rech J, Lane D. (2003) Mapping of functional domains in F plasmid partition proteins reveals a bipartite SopB-recognition domain in SopA. J Mol Biol.; 329: 875–89.
  • Recchia GD, Aroyo M, Wolf D, Blakely G, Sherratt DJ. (1999) FtsK-dependent and -independent pathways of Xer site-specific recombination. EMBO J.; 18: 5724–34.
  • Reeve JN, Mendelson NH, Coyne SI, Hallock LL, Cole RM. (1973) Minicells of Bacillus subtilis. J Bacteriol.; 114: 860–73.
  • Rodionov O, Yarmolinsky M. (2004) Plasmid partitioning and the spreading of P1 partition protein ParB. Mol Microbiol.; 52: 1215–23.
  • Rodionov O, Lobocka M, Yarmolinsky M. (1999) Silencing of genes flanking the P1 plasmid centromere. Science.; 283: 546–49.
  • Sahoo T, Mohanty BK, Patel I, Bastia D. (1995) Termination of DNA replication in vitro: requirements for stereo-specific interaction between two dimers of the replication terminator protein of Bacillus subtilis and with the terminator site to elicit polar contrahelicase and fork impedance. EMBO J.; 14: 619–28.
  • Sawitzke J, Austin S. (2000) Suppression of chromosome segregation defects of Escherichia coli muk mutants by mutations in topoisomerase I. Proc Natl Acad Sci USA.; 97: 1671–6.
  • Sawitzke J, Austin S. (2001) An analysis of the factory model for chromosome replication and segregation in bacteria. Mol Microbiol.; 40: 786–94.
  • Sharp MD, Pogliano K. (2002) MinCD-dependent regulation of the polarity of SpoIIIE assembly and DNA transfer. EMBO J.; 21: 6267–64.
  • Sharp MD, Pogliano K. (2003) The membrane domain of SpoIIIE is required for membrane fusion during Bacillus subtilis sporulation. J Bacteriol.; 185: 2005–8.
  • Sharpe ME, Errington J. (1996) The Bacillus subtilis soj-spo0J locus is required for a centromere-like function involved in prespore chromosome partitioning. Mol Microbiol.; 21: 501–9.
  • Sherratt DJ. (2003) Bacterial chromosome dynamics. Science.; 301: 780–5.
  • Shih Y-L, Le T, Rothfield L. (2003) Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc Natl Acad Sci USA.; 100: 7865–70.
  • Sievers J, Raether B, Perego M, Errington J. (2002) Characterization of the parB-like yyaA gene of Bacillus subtilis. J Bacteriol.; 184: 1102–11.
  • Skarstad K, Lueder G, Lurz R, Speck C, Messer W. (2002) The Escherichia coli SeqA protein binds specifically and co-operatively to two sites in hemimethylated and fully methylated oriC. Mol Microbiol.; 36: 1319–26.
  • Slater S, Wold S, Lu M, Boye E, Skarstad K, Kleckner N. (1995) E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. Cell.; 82: 927–36.
  • Slomińska M, Wegrzyn A, Konopa G, Skarstad K, Wegrzyn G. (2001) SeqA, the Escherichia coli origin sequestration protein, is also a specific transcription factor. Mol Microbiol.; 40: 1371–9.
  • Slomińska M, Konopa G, Ostrowska J, Kedzierska B, Wegrzyn G, Wegrzyn A. (2003) SeqA-mediated stimulation of a promoter activity by facilitating functions of a transcription activator. Mol Microbiol.; 47: 1669–79.
  • Soppa J, Kobayashi K, Noirot-Gros M-F, Oesterhelt D, Ehrlich SD, Dervyn E, Ogasawara N, Moriya S. (2002) Discovery of two novel families of proteins that are proposed to interact with prokaryotic SMC proteins, and characterization of the Bacillus subtilis family members ScpA and ScpB. Mol Microbiol.; 45: 59–71.
  • Soufo HJ, Graumann PL. (2003) Actin-like proteins MreB and Mbl from Bacillus subtilis are required for bipolar positioning of replication origins. Curr Biol.; 13: 1916–20.
  • Steiner WW, Kuempel PL. (1998) Sister chromatid exchange frequencies in Escherichia coli analysed by recombination at the dif resolvase site. J Bacteriol.; 180: 6269–75.
  • Steiner W, Liu G, Donachie WD, Kuempel P. (1999) The cytoplasmic domain of FtsK protein is required for resolution of chromosome dimers. Mol Microbiol.; 31: 579–83.
  • Strunnikov AV, Jessberger R. (1999) Structural maintenance of chromosomes (SMC) proteins: conserved molecular properties for multiple biological functions. Eur J Biochem.; 263: 6–13.
  • Strunnikov AV, Larionov VL, Koshland D. (1993) SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family. J Cell Biol.; 123: 1635–48.
  • Sunako Y, Onogi T, Hiraga S. (2001) Sister chromosome cohesion of Escherichia coli. Mol Microbiol.; 42: 1233–41.
  • Suwanto A, Kaplan S. (1992) Chromosome transfer in Rhodobacter sphaeroides: Hfr formation and genetic evidence for two unique circular chromosomes. J Bacteriol.; 174: 1135–45.
  • Thomas CM, Jagura-Burdzy G. (1991) Replication and segregation: the replicon hypothesis revisited. In Prokaryotic Structure and Function. pp 45–80. Cambridge University Press.
  • Torheim NK, Skarstad K. (1999) Escherichia coli SeqA protein affects DNA topology and inhibits open complex formation at oriC. EMBO J.; 18: 4882–8.
  • Trach K, Burbulys D, Strauch M, Wu J-J, Dhillon N, Jonas R, Hanstein C, Kallio C, Perego M, Bird T, Spiegelman G, Fogher C, Hoch JA. (1991) Control of the initiation of sporulation in Bacillus subtilis by a phosphorelay. Res Microbiol.; 142: 815–23.
  • Turn NJ, Marko JF. (1998) Architecture of a bacterial chromosome. ASM News.; 64: 276–83.
  • van den Ent F, Moller-Jensen J, Amos LA, Gerdes K, Lowe J. (2002) F-actin-like filaments formed by plasmid segregation protein ParM. EMBO J.; 21: 6935–43.
  • Wachi M, Doi M, Tamaki S, Park W, Nakajima-Iijima S, Matsuhashi M. (1987) Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin- binding proteins in Escherichia coli. J Bacteriol.; 169: 4935–40.
  • Wake RG. (1997) Replication fork arrest and termination of chromosome replication in Bacillus subtilis. FEMS Microbiol Lett.; 153: 247–54.
  • Webb CD, Graumann PL, Kahana JA, Teleman AA, Silver PA, Losick R. (1998) Use of time-lapse microscopy to visualize rapid movement of the replication origin region of the chromosome during the cell cycle in Bacillus subtilis. Mol Microbiol.; 28: 883–92.
  • Wegrzyn A, Wegrzyn G. (2001) Inheritance of the replication complex: a unique or common phenomenon in the control of DNA replication. Arch Microbiol.; 175: 86–93.
  • Weigel C, Seitz H. (2002) Strand-specific loading of DnaB helicase by DnaA to a substrate mimicking unwound oriC. Mol Microbiol.; 46: 1149–56.
  • Williams DR, Thomas CM. (1992) Active partitioning of bacterial plasmids. J Gen Microbiol.; 138: 1–16.
  • Woldringh CL, Jensen PR, Westerhoff HV. (1995) Structure and partitioning of bacterial DNA: determined by a balance of compaction and expansion forces? FEMS Microbiol Lett.; 131: 235–42.
  • Wu LJ, Errington J. (1994) Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. Science.; 264: 572–5.
  • Wu LJ, Errington J. (2003) RacA and the Soj-Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis. Mol Microbiol.; 49: 1463–75.
  • Yamaichi Y, Niki H. (2000) Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc Natl Acad Sci USA.; 97: 14656–61.
  • Yamazoe M, Onogi T, Sunako Y, Niki H, Yamamaka K, Ichimura T, Hiraga S. (1999) Complex formation of MukB, MukE and MukF proteins involved in chromosome partitioning in Escherichia coli. EMBO J.; 18: 5873–84.
  • Yates P, Lane D, Biek DP. (1999) The F plasmid centromere, sopC, is required for full repression of the sopAB operon. J Mol Biol.; 290: 627–38.
  • Yu XC, Tran AH, Sun Q, Margolin W. (1998) Localization of cell division protein FtsK to the Escherichia coli septum and identification of a potential N-terminal targeting domain. J Bacteriol.; 180: 1296–304.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-4b45539a-db0d-4654-839a-c03c04c9c67a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.