PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 15 | 1 |

Tytuł artykułu

Metal bioavailability in long-term contaminated Tarnowskie Gory soils

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Metal bioavailability is a key factor in risk assessment procedures for contaminated sites. The goal of our study was to evaluate metal bioavailability and toxicity in long-term contaminated soils in the Tarnowskie Gory area of the Silesia region of Poland. Forty diverse soils were collected throughout the study area. Metal availability was measured using neutral salt extractions, a sequential extraction and an in vitro test for Pb bioaccessibility. Effects of soil contamination on microbial activity and wheat growth were examined in a pot study. The study demonstrated relatively low availability of metals in long-term contaminated soils. In the sequential extractions zinc and lead were mainly present as poorly available fractions defined as associated with iron and manganese oxides or the residual fraction. Cadmium was mainly present in the exchangeable fraction but also occurred in the immobile fractions. Extractable metals and their contents in wheat were mostly dependent on soil pH and were not correlated to their total soil concentrations. Percentage Pb bioaccessibility was the lowest in the most contaminated soils. Long-term contamination of the soils by metals did not reduce microbial activity.

Wydawca

-

Rocznik

Tom

15

Numer

1

Opis fizyczny

p.121-129,fig.,ref.

Twórcy

autor
  • Institute of Soil Science and Plant Cultivation, Czartoryskich 8, 24-100 Pulawy, Poland

Bibliografia

  • 1. MORAGHAN J.T., MASCANI H.J. Environmental and soil factors affecting micronutrients deficiencies and toxicities. [in:] Micronutrients in agriculture, SSSA, Madison, WI, p. 371-413, 1991.
  • 2. MOREL J.L. Bioavailability of trace elements to terrestial plants. [in:] Soil ecotoxicology, Lewis Publishers, Boca Raton, FL, p. 141-176, 1997.
  • 3. CHANEY R.L., OLIVER D.P. Sources, potential adverse effects and remediation of agricultural soil contaminants. [in:] Contaminants and the soil environment in the Australasia-Pacific Region. Proc. First Australasia-Pacific Conference on Contaminants and Soil Environment in the Australasia-Pacific Region, Adelaide, p. 323-359, 1996.
  • 4. CONDER J.M., LANNO R.P., BASTA N.T. Assessment of metal availability in smelter soil using earthworms and chemical extractions. J. Environ. Qual. 30, 1231, 2001.
  • 5. DAI J., BECQUER T., ROULLIER J.H., REVERSAT G., BERNHARD-REVERSAT F., NAHMANI J., LAVELLE P. Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soil. Soil Biol. Biochem. 36, 91, 2004.
  • 6. LI Y.M., CHANEY R.L., SIEBIELEC G., KERSHNER B.A. Response of four turfgrass cultivars to limestone and biosolids compost amendments of a zinc and cadmium contaminated soil at Palmerton, PA. J. Environ. Qual. 29, 1440, 2000.
  • 7. BASTA N.T., GRADWOHL R. Estimation of heavy metal bioavailability in smelter-contaminated soils by a sequential extraction procedure. J. Soil Contam. 9, 149, 2000.
  • 8. PEIJNENBURG W., BAERSELMAN R., DE GROOT A., JAGER T., LEENDERS D., POSTHUMA L., VAN VEEN R. Quantification of metal bioavailability for lettuce (Lactuca sativa L.) in field soils. Arch. Environ. Contam. Toxicol. 39, 420, 2000.
  • 9. RENELLA G., CHAUDRI A.M., BROOKES P.C. Fresh additions of heavy metal do not model long-term effects on microbial biomass and activity. Soil Biol. Biochem. 34, 121, 2002.
  • 10. GEE, G.W., BAUDER J.W. Particle size analysis. [in:] A. Klute et al. (ed.) Methods of soil analysis. Part 1. 2nd ed. ASA and SSSA, Madison, WI, p. 383-411, 1986.
  • 11. MCGRATH, S.P., CUNLIFFE C.H. A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co and Mn from soils and sewage sludges. J. Sci. Food Agric. 36, 794, 1985.
  • 12. TESSIER A., CAMPBELL P., BISSON M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 834, 1979.
  • 13. RUBY M.V., DAVIS A., LINK T.E., SCHOOF R., CHANEY R.L., FREEMAN G.B., BERGSTROM P.D. Development of an in vitro screening test to evaluate the in vivo solubility of ingested mine-waste lead. Environ. Sci. Technol. 27, 2870, 1993.
  • 14. CASIDA L. E., KLEIN D.A., SANTORO T. Soil dehydrogenase activity. Soil Science, 98, 371, 1964.
  • 15. TABATABAI M.A., BREMNER J.M. Assay of urease activity in soils. Soil Biol. Biochem. 4, 479, 1972.
  • 16. SAS INSTITUTE. SAS/STATTM User’s Guide, Release 6.03 Edition. SAS Institute Inc, Cary, N.C., 1988.
  • 17. KABATA-PENDIAS A., MOTOWICKA-TERELAK T., PIOTROWSKA M., TERELAK H., WITEK T. Assessment of soil and plant pollution with heavy metals and sulphur. Guidelines for agriculture, Inst. of Soil Sci. and Plant Cultivation, Pulawy, Poland, 1993.
  • 18. TERELAK H., STUCZYNSKI T., PIOTROWSKA M. Heavy metals in agricultural soils in Poland, Pol. J. Soil Science 30, 35, 1997.
  • 19. TURSKI R., BARAN S. The contents of Pb, Zn, Cu, Mn, B i Sr in different soil types in the area under influence of Miasteczko Slaskie smelter (in polish). Zesz. Prob. Post. Nauk Roln. 179, 609, 1976.
  • 20. WITEK T., PIOTROWSKA M., MOTOWICKA-TERELAK T. Scope and methods of changing the structure of the agriculture in the most contaminated areas of Katowice voivodeship. Part 1. Tarnowskie Gory area. (In polish.) Technical report. Inst. of Soil Sci. and Plant Cultivation, Pulawy, Poland, 1992.
  • 21. SAUERBECK D. R., HEIN A. The nickel uptake from different soils and its prediction by chemical extractions. Water Air Soil Pollution 57-58, 861, 1991.
  • 22. SMOLDERS E., LAMBREGTS R.M., MCLAUGHLIN M.J., TILLER K.G. Effect of soil solution chloride on cadmium availability to swiss chard. J. Environ. Qual. 27, 426, 1998.
  • 23. SIEBIELEC G., CHANEY R.L. Remediation of diverse soils contaminated by a Ni refinery in Port Colborne,Ontario - Development of a soil Ni extraction test which predicts phytoavailability and phytotoxicity of Ni. Report for Viridian Env. and Inco Ltd, Toronto, Canada, 2000.
  • 24. COTTER-HOWELLS J. Lead phosphate formation in soils. Environmental Pollution 90, 1, 1995.
  • 25. MA Q.Y., TRAINA S.J., LOGAN T.J., RYAN J.A. In situ lead immobilization by apatite. Environ. Sci. Technol. 27, 1803, 1993.
  • 26. SIEBIELEC G., STUCZYŃSKI T., CHANEY R.L. Lead bioaccessibility in various contaminated soils and methods of in situ Pb inactivation, [in:] Proc. Extended Abstracts from 6th International Conference on Biogeochemistry of Trace Elements, Guelph, Canada, 2001.
  • 27. ANGLE J.S., CHANEY R.L., RHEE D. Bacterial resistance to heavy metals related to extractable and total metal concentrations in soil and media. Soil Biol. Biochem. 25, 1443, 1993.
  • 28. PALMBORG C., NORDGREN A. Partitioning the variation of microbial measurements in forest soil into heavy metal and substrate quality dependent parts by use of near infrared spectroscopy and multivariate statistics. Soil Biol. Biochem. 28, 711, 1996.
  • 29. REMDE, A. HUND, K. Response of soil autotrophic nitrification and soil respiration to chemical pollution in long-term experiments. Chemosphere 29, 391, 1994.
  • 30. VAN BEELEN P., DOELMAN P. Significance and application of microbial toxicity tests in assessing ecotoxicological risks of contaminants in soil and sediment. Chemosphere 34, 455, 1997.
  • 31. LOCK K., JANSSEN C.R. Influence of aging on metal availability in soils. Rev. Environ. Contam. Toxicol. 178, 1, 2003.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-4b14e750-06cd-496d-a928-737a855fdeb3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.