PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 28 | 6 |
Tytuł artykułu

Quantitative analysis of phenolics in selected crop species and biological activity of these compounds evaluated by sensitivity of Echinochloa crus-galli

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study was to determine the content of selected phenolic compounds in white mustard, buckwheat, spring barley, oat and rye grown under field conditions. Moreover, the allelopathic efficiency of these compounds was evaluated by sensitivity of Echinochloa crus-galli. The aromatic acids: transcinnamic, salicylic, ferulic, chlorogenic, p-hydroxybenzoic, protocatechuic, p-coumaric and vanillic were separated from crop plants by TLC and determined spectrophotometrically. Differences in concentrations of analysed compounds were observed for most of the examined plant species. The highest concentration was noticed for cinnamic acid and ranged from 360 gg-g⁻¹ DW in rye to 2770 gg-g⁻¹ DW in spring barley. The relatively high concentration was noticed for ferulic acid (from 73.8 gg-g⁻¹ DW in buckwheat to 1046 gg-g⁻¹ DW in spring barley) and p-coumaric acid (from 50 gg-g⁻¹ DW in oat to 1499 gg-g⁻¹ DW in buckwheat). The observed differences in the phenolics content between two successive vegetation seasons can reflect the effect of abiotic and biotic environmental factors on the phenolics level in studied plants.In the greenhouse experiment the effect of particular compounds on the growth of Echinochloa crus-galli was also studied. It has been found that the examined phenolics, and especially transcinnamic acid and mixiure of phenolic compounds, significantly inhibit the growth of Echinochloa crus-galli. The obtained results may contribute to the explanation of the biological activity of some phenolic compounds.
Wydawca
-
Rocznik
Tom
28
Numer
6
Opis fizyczny
p.537-545,fig.,ref.
Twórcy
autor
  • Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland
autor
autor
autor
Bibliografia
  • Bate N.J., Orr J., Ni W., Merom A., Nadler-Hassar T., Doerner P.W., Dixon R.A., Lamb C.J., Elkind Y. 1994. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. In: Proceedings National Academy of Science, USA, 91: 7608-7612.
  • Blum U. 1999. Designing laboratory plant debris-soil bioassays: some reflections. In: Inderjit, Dakshini K.M.M., Foy C.L. (eds). Principles and practices in plant ecology: allelochemical interactions. CRC, Boca Raton, pp. 17-23.
  • Caldwell M.M., Robberecht R., Flint S.D. 1983. Internal filters: Prospects for UV-acclimation in higher plants. Physiol. Plant., 58: 445-450.
  • Delalonde M., Barret Y., Coumans M.P. 1996. Development of phenotic compounds in maize anthers (Zea mays) during cold pretreatment prior to androgenesis. J. Plant Physiol., 149: 612-616.
  • Duke S.O., Dayan F.E., Romagni J.G., Rimando A.M. 2000. Natural products as sources of herbicides: current status and future trends. Weed Res., 40: 99-111.
  • Duke S.O. 1985. Biosynthesis of phenolic compounds. Chemical manipulation in higher plants. In: Thompson A.C. (ed.). The chemfstry of allelopathy: Biochemical interactions among plants. Am. Chem. Soc. Symp. Ser. 268. Am. Chem. Soc., Washington, DC., pp. 113-131.
  • Einhellig F.A. 1996. Interactions involving allelopathy in cropping system. Agr. J., 88: 886-893.
  • Einhellig F.A., Rasmussen J.A., Hejl A.M., Souza I.F. 1993. Effects of root exudate sorgoleone on photosynthesis. J. Chem. Ecol., 19: 369-375.
  • Gonzalez V.M., Kazimir J., Nimbal C., Weston L.A., Cheniae G.M. 1997. Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. J. Agric. Food Chem., 45: 1415-1421.
  • Guenzi W.D., McCalla T.M. 1966. Phenotic acid in oats, wheat, sorghum, and corn restdues and their phytotoxixity. Agr. J., 58: 303-304.
  • Guinn G., Eindenbock M.P. 1982. Catechin and condensed tannin contents of leaves and bolls of cotton in retation to irrigation and boll load. Crop Sci., 22: 614-616.
  • Hao Z., Charles D.J., Yu L., Simon J.E. 1999. Purification and characterization of a phenylalanine ammonia-lyase from Ocimum basilicum. Phytochem., 43: 735-739.
  • Harborne J.B. 1985. Phenolics and plant defence. Annu. Proc. Phytochem. Soc. Europe., 25: 395-408.
  • Horner J.D. 1990. Nonlinear effects ofwater deficits on fotiar tannin concentration. Biochem. Syst. Ecol., 18: 211-213.
  • Inderjit 1996. Plant phenolics in allelopathy. Bot. Rev., 62: 186-202.
  • Inderjit, Duke S.O. 2003. Ecophysiological aspects of allelopathy. Planta, 217: 529-539.
  • Inderjit, Keating K.I. 1999. Allelopathy: principles, procedures, progress and promises for biological control. Adv. Agr., 67: 141-231.
  • Jones D.H. 1984. Phenylalanine ammonia-lyase: regulation of its induction and its role in plant development. Phytochem., 23: 1349-1359.
  • Mattice J., Dilday R.H., Gbur E.E., Skulman B.W. 2001. Inhibition of barnyardgrass growth with rice. Agr. J., 93: 8-11.
  • Olofsdotter M., Navarez D.C. 1996. Allelopathic rice for Echinochloa crus-galli control. In: Proceedings 2nd International Weed Control Congress, Copenhagen, Denmark, 1175-1181.
  • Olofsdotter M., Rebulanan M., Madrid A., Wang D.L., Navarez D., Olk D.C. 2002. Why phenolic acids are untikely primary allelochemicals in rice. J. Chem. Ecol., 28: 229-242.
  • Piskorz B. 1997. Oddziaływanie allelopatyczne chwastnicy jednostronnej (Echinochloa crus-galli L.) na niektóre rośliny warzywne. I. Wpływ wodnych wyciągów z chwastnicy jednostronnej na kiełkowanie ogórka, pomidora i rzodkiewki. Zesz. Probl. Post. Nauk Roln., 452: 153-165.
  • Putnam A.R., De Frank J., Barnes J.P. 1983. Exploitation of allelopathy for weed control in annual and perennial cropping systems. J. Chem. Ecol., 9: 1001-1010.
  • Rice E.L. 1984. Allelopathy. Second Edition, Academic Press, New York, pp. 422.
  • Roll H. 1986. Yield of maize as related to the duration of Echinochloa crus-galli and Amaranthus retroflexus in maize stand. Pam. Puł., 87: 155-170.
  • Romagni J.G., Allen S.N., Dayan F.E. 2000. Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol., 26: 303-313
  • Rosier J., Krekel F., Amrhein N., Schmid J. 1997. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol., 113: 175-179.
  • Ruiz J.M., Bretones G., Baghour M., Belakbir A., Romero L. 1998. Relationship between boron and phe- no-ic me-abo-ism in tobacco leaves. Phytochem., 48: 269-272.
  • Ruiz J.M., Garcia P.C., Rivero R.M., Romero L. 1999. Response of phenolic metabolism to the application of carbendazim plus boron in tobacco. Physiol. Plant., 106: 151-157.
  • Schweiger J., Lang M., Lichtenthaler H.K. 1996. Differences in fluorescence excitation spectra of leaves between stressed and non-stressed plants. J. Plant Physiol., 148: 536-547.
  • Sene M., Dore T., Gallet Ch. 2001. Relationship between biomass and pheno-ic production in grain sorghum grown under different conditions. Agr. J., 93: 49-54.
  • Smith G.D., Doan N.T. 1999. Cyanobacterial metabolites with bioactivity against photosyntiiesis in cyano bacteria, algae and higher plants. J. Appl. Phycol., 11: 337-344.
  • Stupnicka-Rodzynkiewicz E., Dubert F., Hochól T., Hura T., Lepiarczyk A., Stokłosa A. 2004. Possibility of application of plants allelopathy for weed control. (in Polish) Zesz. Probl. Post. Nauk Roln., 496: 343-355.
  • Tempel A.S. 1981. Field studies of the relationship between herbivore damage and tannin content in bracken (Pteridium aquilinum Kuhn.). Oecologia, 51: 97-106.
  • Yenish J.P., Worsham A.D., York A.C. 1996. Cover crops for herbicide replacement in no-tillage corn (Zea mays). Weed Technol., 10: 815-821.
  • Vangessel M.J, Renner K.A. 1990. Redroot pigweed (Amaranthus retroflexus) and barnzard grass (Echino- chloa crus+galli) interference in potatoes (Solanum tuberosum). Weed Sci., 38: 338-343.
  • Wu H., Pratley J., Lemerle D., Haig T. 1999. Crop cultivars with allelopathic capabil-ty. Weed Res., 39: 171-180.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-4ac3a2d5-d9a1-487b-8bb6-5a8418c1edf6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.