PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 54 | 2 |

Tytuł artykułu

Purification and characterization of GlcNAc-6-P 2-epimerase from Escherichia coli K92

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
N-Acetylmannosamine (ManNAc) is the first committed intermediate in sialic acid metabolism. Thus, the mechanisms that control intracellular ManNAc levels are important regulators of sialic acid production. In prokaryotic organisms, UDP-N-acetylglucosamine (GlcNAc) 2-epimerase and GlcNAc-6-P 2-epimerase are two enzymes capable of generating ManNAc from UDP-GlcNAc and GlcNAc-6-P, respectively. We have purified for the first time native GlcNAc-6-P 2-epimerase from bacterial source to apparent homogeneity (1 200 fold) using Butyl-agarose, DEAE-FPLC and Mannose-6-P-agarose chromatography. By SDS/PAGE the pure enzyme showed a molecular mass of 38.4 ± 0.2 kDa. The maximum activity was achieved at pH 7.8 and 37oC. Under these conditions, the Km calculated for GlcNAc-6-P was 1.5 mM. The 2-epimerase activity was activated by Na++ and inhibited by mannose-6-P but not mannose-1-P. Genetic analysis revealed high homology with bacterial isomerases. GlcNAc-6-P 2-epimerase from E. coli K92 is a ManNAc-inducible protein and is detected from the early logarithmic phase of growth. Our results indicate that, unlike UDP-GlcNAc 2-epimerase, which promotes the biosynthesis of sialic acid, GlcNAc-6-P 2-epimerase plays a catabolic role. When E. coli grows using ManNAc as a carbon source, this enzyme converts the intracellular ManNAc-6-P generated into GlcNAc-6-P, diverting the metabolic flux of ManNAc to GlcNAc.

Wydawca

-

Rocznik

Tom

54

Numer

2

Opis fizyczny

p.387-399,fig.,ref.

Twórcy

  • Universidad de Leon, Campus de Vegazana, 24007 Leon, Spain
autor

Bibliografia

  • Biswas M, Singh B, Datta A (1979) Induction of N-acetylmannosamine catabolic pathway in yeast. Biochim Biophys Acta 585: 535–542.
  • Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997). The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1474.
  • Blume A, Benei AJ, Stolz F, Schmidt RR, Reutter W (2004) Characterization of ligand binding to the bifunctional key enzyme in the sialic acid biosynthesis by NMR. J Biol Chem 279: 55715–55721.
  • Bork K, Reutter W, Gerardy-Schahn R, Horstkorte R (2005) The intracellular concentration of sialic acid regulates the polysialylation of the neural cell adhesion molecule. FEBS Lett 579: 5079–5083.
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.
  • Bravo IG, Barrallo S, Ferrero MA, Rodríguez-Aparicio LB, Martínez-Blanco H, Reglero A (2001) Kinetic properties of the acylneuraminate cytidylyltransferase from Pasteurella haemolytica A2. Biochem J 358: 585–598.
  • Chou WK, Hinderlich S, Reutter W, Tanner ME (2003) Sialic acid biosynthesis: stereochemistry and mechanism of the reaction catalyzed by the mammalian UDP-N-acetylglucosamine 2-epimerase. J Am Chem Soc 125: 2455–2461.
  • Corfield AP, Schauer R (1982) Occurrence of sialic acids. In Sialic Acids. Chemistry, Metabolism and Function (Schauer R, ed) pp 5–50. Springer-Verlag, New York.
  • Ezquerro-Sáenz C, Ferrero MA, Revilla-Nuín B, López-Velasco FF, Martínez-Blanco H, Rodríguez-Aparicio LB (2006) Transport of N-acetyl-d-galactosamine in Escherichia coli K92: effect on acetyl-amino sugar metabolism and polysialic acid production. Biochimie 88: 95–102.
  • Ferrero MA, Reglero A, Fernández-López M, Ordás R, Rodríguez-Aparicio LB (1996) N-Acetyl-d-neuraminic acid lyase generates the sialic acid for colominic acid biosynthesis in Escherichia coli K1. Biochem J 317: 157–165.
  • González-Clemente C, Luengo JM, Rodríguez-Aparicio LB, Reglero A (1989) Regulation of colominic acid biosynthesis by temperature: role of cytidine 5´-monophosphate N-acetylneuraminic acid synthetase. FEBS Lett 250: 429–432.
  • González-Clemente C, Luengo JM, Rodríguez-Aparicio LB, Ferrero MA, Reglero A (1990) High production of polysialic acid [Neu5Acα(2–8)-Neu5Acα(2–9)]n by Escherichia coli K92 grown in a chemically defined médium. Biol Chem Hoppe-Seyler 371: 1101–1106.
  • Grosh S, Roseman S (1965) The sialic acids. IV N-acyl-dglucosamine 6-phosphate 2-epimerase. J Biol Chem 240: 1525-1530
  • Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han CG, Ohtsubo E, Nakayama K, Murata T, Tanaka M, Tobe T, Iida T, Takami H, Honda T, Sasakawa C, Ogasawara N, Yasunaga T, Kuhara S, Shiba T, Hattori M, Shinagawa H (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8: 11–22.
  • Hewick RM, Hunkapiller MW, Hood LE, Dreyer WJ (1981) A gas-liquid solid phase peptide and protein sequenator. J Biol Chem 256: 7990–7997.
  • Hinderlich S, Stasche R, Zeitler R, Reutter W (1997) A bifunctional enzyme catalyzes the first two steps in Nacetylneuraminic acid biosynthesis of rat liver. Purification and characterization of UDP-N-acetylglucosamine 2-epimerase/N-acetyl-mannosamine kinase. J Biol Chem 272: 24313–24318.
  • Hinderlich S, Nöring S, Weise Ch, Franke P, Stäsche R, Reuter W (1998) Purification and characterization of N-acetylglucosamine kinase from rat liver. Comparison with UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Eur J Biochem 252: 133–139.
  • Itoh T, Mikami B, Maru I, Ohta Y, Hashimoto W, Murata K (2000) Crystal structure of N-acyl-d-glucosamine 2-epimerase from porcine kidney at 2.0 Å resolution. J Mol Biol 303: 733–744.
  • Jin Q, Yuan Z, Xu J, Wang Y, Shen Y, Lu W, Wang J, Liu H, Yang J, Yang F, Zhang X, Zhang J, Yang G, Wu H, Qu D, Dong J, Sun L, Xue Y, Zhao A, Gao Y, Zhu J, Kan B, Ding K, Chen S, Cheng H, Yao Z, He B, Chen R, Ma D, Qiang B, Wen Y, Hou Y, Yu J (2002) Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res 30: 4432–4441.
  • Kalivoda KA, Steenbergen SM, Vimr ER, Plumbridge J (2003) Regulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli. J Bacteriol 185: 4806–4815.
  • Kupor SR, Fraenkel DG (1969) 6-Phosphogluconolactonase mutants of Escherichia coli and a maltose blue gene. J Bacteriol 100: 1296–1301.
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.
  • Luchansky SJ, Yarema KJ, Takahashi S, Bertozzi CR (2003) GlcNAc 2-epimerase can serve a catabolic role in sialic acid metabolism. J Biol Chem 278: 8035–8042.
  • Martínez-Blanco H, Reglero A, Rodríguez-Aparicio LB, Luengo JM (1990) Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. J Biol Chem 265: 7084–7090.
  • Maru I, Ohta Y, Murata K, Tsukada Y (1996) Molecular cloning and identification of N-acyl-d-glucosamine 2-epimerase from porcine kidney as a rennin-binding protein. J Biol Chem 271: 16294–16299.
  • Maru I, Ohnishi J, Ohta Y, Tsukada Y (2002) Why is sialic acid attracting interest now? Complete enzymatic synthesis of sialic acid with N-acetylglucosamine 2-epimerase. J Biosci Bioeng 93: 258–265.
  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Meth Enzymol 155: 335–350.
  • Murkin AS, Chou WK, Wakarchuk W, Tanner ME (2004) Identification and mechanism of a bacterial hydrolyzing UDP-N-acetylglucosamine 2-epimerase. Biochemistry 43: 14290–14298.
  • Noguchi S, Keira Y, Murayama K, Ogawa M, Fujita M, Kawahara G, Oya Y, Imazawa M, Goto Y, Hayashi YK, Nonaka I, Nishino I (2004) Reduction of UDP-Nacetylglucosamine 2-epimerase/N-acetylmannosamine kinase activity and sialylation in distal myopathy with rimmed vacuoles. J Biol Chem 279: 11402–11407.
  • Ortiz AI, Reglero A, Rodríguez-Aparicio LB, Luengo JM (1989) In vitro synthesis of colominic acid by membrane-bound sialyltransferase of Escherichia coli K-235. Eur J Biochem 178: 741–749.
  • Perna NT, Plunkett G III, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Posfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch RA, Blattner FR (2001) Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409: 529–533.
  • Petersen M, Fessner WD, Frosch M, Lüneberg E (2000) The siaA gene involved in capsule polysaccharide biosynthesis of Neisseria meningitides B codes for N-acetylglucosamine-6-phosphate 2-epimerase activity. FEMS Microbiol Lett 184: 161–164.
  • Plumbridge J, Vimr E (1999) Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminic acid by Escherichia coli. J Bacteriol 181: 47–54.
  • Reutter W, Köttgen E, Bouer C, Gerok W (1982) Biological significance of sialic acids. In Sialic acids. Chemistry, Metabolism and Function (Schauer R, ed) pp 263–306. Springer-Verlag, New York.
  • Revilla-Nuin B, Reglero A, Feo JC, Rodríguez-Aparicio LB, Ferrero MA (1998a) Identification, expression and tissue distribution of cytidine 5´-monophosphate Nacetylneuraminic acid synthetase activity in the rat. Glycoconjugate J 15: 233–241.
  • Revilla-Nuín B, Rodríguez-Aparicio LB, Ferrero MA, Reglero A (1998b) Regulation of capsular polysialic acid biosynthesis by N-acetyl-d-mannosamine, an intermediate of sialic acid metabolism. FEBS Lett 426: 191–195.
  • Revilla-Nuin B, Reglero A, Ferrero MA, Rodríguez-Aparicio LB (1999) Uptake of N-acetyl-d-mannosamine: an essential intermediate in polysialic acid biosynthesis by Escherichia coli K92. FEBS Lett 449: 183–186.
  • Revilla-Nuin B, Reglero A, Martínez-Blanco H, Bravo IG, Ferrero MA, Rodriguez-Aparicio LB (2002) Transport of N-acetyl-d-mannosamine and N-acetyl-d-glucosamine in Escherichia coli K1: effect on capsular polysialic acid production. FEBS Lett 511: 97–101.
  • Riley M, Abe T, Arnaud MB, Berlyn MK, Blattner FR, Chaudhuri RR, Glasner JD, Horiuchi T, Keseler IM, Kosuge T, Mori H, Perna NT, Plunkett G, Rudd KE, Serres MH, Thomas GH, Thomson NR, Wishart D, Wanner BL (2006) Escherichia coli K-12: a cooperatively developed annotation snapshot-2005. Nucleic Acids Res 34: 1–9.
  • Ringenberg MA, Steenbergen SM, Vimr WR (2003) The first committed step in the biosynthesis of sialic acid by Escherichia coli K1 does not involve a phosphorylated N-acetylmannosamine intermediate. Mol Microbiol 50: 961–975.
  • Rodríguez-Aparicio LB, Reglero A, Luengo JM (1987) Uptake of N-acetylneuraminic acid by Escherichia coli K-235. Biochemical characterization of the transport system. Biochem J 246: 287–294.
  • Rodríguez-Aparicio LB, Reglero A, Ortiz AI, Luengo JM (1988) Effect of physical and chemical conditions on the production of colominic acid by Escherichia coli in a defined medium. Appl Microbiol Biotechnol 27: 474–483.
  • Rodríguez-Aparicio LB, Luengo JM, González-Clemente C, Reglero A (1992) Purification and characterization of the nuclear cytidine 5´-monophosphate N-acetylneur aminic acid synthetase from rat liver. J Biol Chem 267: 9257–9263.
  • Rodríguez-Aparicio LB, Ferrero MA, Revilla-Nuin B, Martínez-Blanco H, Reglero A (1999) Determination of different amino sugar 2-epimerase activities by coupling to N-acetylneuraminate synthesis. Biochim Biophys Acta 1428: 305–313.
  • Rutishauser U (1993) Regulation of cell–cell interactions by NCAM and its polysialic acid moiety. In Polysialic acid (Roth J, Rutishauser U, Troy FA, eds) pp 215–227. Birkhäuser Verlag, Germany.
  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467.
  • Shevchenko A, Chernushevich I, Wilm M, Mann M (2000) In Protein in Peptide Analysis (Chapman JR, ed) vol 146, pp 116. Human Press, Totowa, New Jork.
  • Solana S, Reglero A, Martínez-Blanco H, Revilla-Nuín B, Bravo IG, Rodríguez-Aparicio LB, Ferrero MA (2001) N-Acetylneuraminic acid uptake in Pasteurella (Mannheimia) haemolytica A2 occurs by an inducible and specific transport system. FEBS Lett 509: 41–46.
  • Stasche R, Hinderlich S, Weise C, Effertz K, Lucka L, Moormann P, Reutter W (1997) A bifunctional enzyme catalyzes the first two steps in N-acetylneuraminic acid biosynthesis of rat liver. Molecular cloning and functional expression of UDP-N-acetyl-glucosamine 2-epimerase/N-acetylmannosamine kinase. J Biol Chem 272: 24319–24324.
  • Svennerholm L (1958) Quantitative estimation of sialic acids. Acta Chem Scand 12: 547–554.
  • Tanner ME (2005) The enzymes of sialic acid biosynthesis. Bioorg Chem 33: 216–228.
  • Thomason LC, Court DL, Datta AR, Khanna R, Rosner JL (2004) Identification of Escherichia coli K12 ybhE gene as pgl, encoding 6-phosphogluconolactonase. J Bacteriol 186: 8248–8253.
  • Van Rinsum J, Van Dijk W, Hoogwinkel JM, Ferwerda W (1983) Subcellular localization and tissue distribution of sialic acid precursor-forming enzymes. Biochem J 210: 21–28.
  • Vann WF, Zapata G, Boulnois R, Silver RP (1993) Structure and function of enzymes in sialic acid metabolism in polysialic producing bacteria. In Polysialic acid (Roth J, Rutishauser U, Troy FA, eds) pp 125–136. Birkhäuser Verlag, Germany.
  • Vann WF, Daines DA, Murkin AS, Tanner ME, Chaffin DO, Rubens CE, Vionnet J, Silver RP (2004) The neuC protein of Escherichia coli K1 is a UDP N-acetylglucosamine 2-epimerase. J Bacteriol 186: 706–712.
  • Viswanathan K, Narang S, Hinderlich S, Lee YC, Betenbaugh MJ (2005) Engineering intracellular CMP-sialic acid metabolism into insect cells and methods to enhance its generation. Biochemistry 44: 7526–7534.
  • Walters DM, Stirewalt VL, Melville SB (1999) Cloning, sequence, and transcriptional regulation of the operon encoding a putative N-acetylmannosamine-6-phosphate epimerase (nanE) and sialic acid lyase (nanA) in Clostridium perfringens. J Bacteriol 181: 4526–4532.
  • Warren L (1959) The thiobarbituric acid assay of sialic acids. J Biol Chem 234: 1971–1975.
  • Yang F, Yang J, Zhang X, Chen L, Jiang Y, Yan Y, Tang X, Wang J, Xiong Z, Dong J, Xue Y, Zhu Y, Xu X, Sun L, Chen S, Nie H, Peng J, Xu J, Wang Y, Yuan Z, Wen Y, Yao Z, Shen Y, Qiang B, Hou Y, Yu J, Jin Q (2005) Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 33: 6445–6458.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-4984acab-1760-41f6-bd5d-fefa57a5679c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.