PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 47 | 4 |

Tytuł artykułu

Mitochondria recycle nitrite back to the bioregulator nitric monoxide

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Nitric monoxide (NO) exerts a great variety of physiological functions. L-Arginine supplies amino groups which are transformed to NO in various NO-synthase-active isoenzyme complexes. NO-synthesis is stimulated under various conditions increasing the tissue of stable NO-metabolites. The major oxidation product found is nitrite. Elevated nitrite levels were reported to exist in a variety of diseases including HIV, reperfusion injury and hypovolemic shock. Denitrifying bacteria such as Paracoccus denitrificans have a membrane bound set of cytochromes (cyt cd1, cyt bc) which were shown to be involved in nitrite reduction activities. Mammalian mitochondria have similar cytochromes which form part of the respiratory chain. Like in bacteria quinols are used as reductants of these types of cytochromes. The observation of one-e- divergence from this redox-couple to external dioxygen made us to study whether this site of the respiratory chain may also recycle nitrite back to its bioactive form NO. Thus, the aim of the present study was therefore to confirm the existence of a reductive pathway which reestablishes the existence of the bioregulator NO from its main metabolite NO2-. Our results show that respiring mitochondria readily reduce added nitrite to NO which was made visible by nitrosylation of deoxyhemoglobin. The adduct gives characteristic triplet-ESR-signals. Using inhibitors of the respiratory chain for chemical sequestration of respiratory segments we were able to identify the site where nitrite is reduced. The results confirm the ubiquinone/cyt bc1 couple as the reductant site where nitrite is recycled. The high affinity of NO to the heme-iron of cytochrome oxidase will result in an impairment of mitochondrial energy-production. "Nitrite tolerance" of angina pectoris patients using NO-donors may be explained in that way.

Wydawca

-

Rocznik

Tom

47

Numer

4

Opis fizyczny

p.913-921,fig.,ref.

Twórcy

autor
  • University of Veterinary Medicine, Veterinarplatz 1, A-1210 Vienna, Austria
autor
autor
autor
autor
autor

Bibliografia

  • 1. Palmer, R.M., Ferrige, A.G. & Moncada, S. (1987) Nitric oxide release accounts for the bi­ological activity of endothelium-derived relax­ing factor. Nature 327, 524-526.
  • 2. Henry, Y., Lepoivre, M., Drapier, J.C., Duc- rocq, C., Boucher, J.L. & Guissani, A. (1993) EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEBJ. 7, 1124-1134.
  • 3. Seligman, S.P., Buyon, J.P., Clancy, R.M., Young, B.K. & Abramson, S.B. (1994) The role of nitric oxide in the pathogenesis of pre- eclampsia. Am. J. Obstet. Gynecol. 171, 944­948.
  • 4. Tsikas, D., Boger, R.H., Bode Boger, S.M., Gutzki, F.M. & Frolich, J.C. (1994) Quantifica­tion of nitrite and nitrate in human urine and plasma as pentafluorobenzyl derivatives by gas chromatography-mass spectrometry using 15 their N-labelled analogs. J. Chromatogr. B. Biomed. Appl. 661, 185-191.
  • 5. Preik Steinhoff, H. & Kelm, M. (1996) Deter­mination of nitrite in human blood by combi­nation of a specific sample preparation with high-performance anion-exchange chromatog- raphy and electrochemical detection. J. Chro- matogr. B. Biomed. Appl. 685, 348-352.
  • 6. Komori, K., Matsumoto, T., Ishida, M., Kuma, S., Yonemitsu, Y., Eguchi, D. & Sugimachi, K. (1997) Enhancement of nitric oxide produc­tion after arterial reconstruction in patients with arteriosclerosis obliterans. J. Vasc. Surg. 26, 657-662.
  • 7. Zweier, J.L., Wang, P., Samouilov, A. & Kuppusamy, P. (1995) Enzyme-independent formation of nitric oxide in biological tissues. Nature Med. 1, 804-809.
  • 8. Vanin, A.F., Kiladze, S.V. & Kubrina, L.N. (1977) Factors influencing formation of dinitrosyl complexes of non-heme iron in the organs of animals in vivo. Biofizika 22, 850-855.
  • 9. Zhang, Z., Naughton, D., Winyard, P.G., Ben­jamin, N., Blake, D.R. & Symons, M.C.R. (1998) Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: A po­tential pathway for nitric oxide formation in the absence of nitric oxide synthase activity [published erratum appears in Biochem Biophys. Res. Commun. (1998) Biochem. Biop- hys. Res. Commun. 249, 767- 772.
  • 10. Stolze, K., Dadak, A., Liu, Y. & Nohl, H. (1996) Hydroxylamine and phenol-induced formation of methemoglobin and free radical intermedi­ates in erythrocytes. Biochem. Pharmacol. 52, 1821-1829.
  • 11. Szarkowska, L. & Klingenberg, M. (1963) On the role of ubiquinone in mitochondria, Spec- trophotometric and chemical measurements of its redox reaction. Biochem. Z. 338, 674­697.
  • 12. Graham, J.M. & Rickwood, D. (1997) Sub­cellular Fractionation. Oxford University Press, Oxford, New York, Tokyo.
  • 13. Kozlov, A.V., Bini, A., Iannone, A., Zini, I. & Tomasi, A. (1996) Electron paramagnetic reso­nance characterization of rat neuronal nitric oxide production ex vivo. Methods Enzymol. 268, 229-236.
  • 14. Kozlov, A.V., Sobhian, B., Duvigneau, C., Costantino, G., Gemeiner, M., Nohl, H., Redl, H. & Bahrami, S. (1999) NO synthase-de- pendent/independent formation of NO after intestinal ischemia and reperfusion. Shock (Suppl.) 12, 44.
  • 15. Kozlov, A.V., Sobhian, B., Duvigneau, C., Gemeiner, M., Nohl, H., Redl, H. & Bahrami, S. (2000) Organ specific formation of nitrosyl complexes under intestinal ischemia/reper- fusion in rats involves NOS-independent mechanism(s). Shock, in press.
  • 16. Henry, Y. & Bessieres, P. (1984) Denitri- fication and nitrite reduction: Pseudomonas aeruginosa nitrite-reductase. Biochimie 66, 259-289.
  • 17. Carr, G.J., Page, M.D. & Ferguson, S.J. (1989) The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses syn­thesis of nitric oxide and evidence from trap­ping experiments for nitric oxide as a free in­termediate during denitrification. Eur. J. Biochem. 179, 683-692.
  • 18. Bessieres, P. & Henry, Y. (1984) Stoichio- metry of nitrite reduction catalyzed by Pseudo­monas aeruginosa nitrite-reductase. Biochimie 66, 313-318.
  • 19. Zweier, J.L., Samouilov, A. & Kuppusamy, P. (1999) Non-enzymatic nitric oxide synthesis in biological systems. Biochim. Biophys. Acta, 1411, 250-262.
  • 20. Ghafourifar, P. & Richter, C. (1997) Nitric ox­ide synthase activity in mitochondria. FEBS Lett. 418, 291-296.
  • 21. Giulivi, C., Poderoso, J.J. & Boveris, A. (1998) Production of nitric oxide by mitochondria. J. Biol. Chem. 273, 11038-11043.
  • 22. Nohl, H., Gille, L. & Kozlov, A.V. (1998) Prooxidant functions of coenzyme Q. Subcell. Biochem. 30, 509-526.
  • 23. Brown, G.C. (1995) Nitric oxide regulates mi- tochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 369, 136-139.
  • 24. Ghafourifar, P., Schenk, U., Klein, S.D. & Richter, C. (1999) Mitochondrial nitric-oxide synthase stimulation causes cytochrome c re­lease from isolated mitochondria. Evidence for intramitochondrial peroxynitrite forma­tion. J. Biol. Chem. 274, 31185-31188.
  • 25. Boveris, A., Costa, L.E., Poderoso, J.J., Carreras, M.C. & Cadenas, E. (2000) Regula­tion of mitochondrial respiration by oxygen and nitric oxide. Ann. N.Y. Acad. Sci. U.S.A. 899, 121-135.
  • 26. Takehara, Y., Nakahara, H., Inai, Y., Yabuki, M., Hamazaki, K., Yoshioka, T., Inoue, M., Horton, A.A. & Utsumi, K. (1996) Oxygen-de­pendent reversible inhibition of mitochondrial respiration by nitric oxide. Cell Struct. Funct. 21, 251-258.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-4906e09e-b112-4641-a869-6f496693efc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.