PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 18 | 3 |

Tytuł artykułu

Enrichment of Salix viminalis wood in metal ions by phytoextraction

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Salix viminalis is a plant widely applied as a source of renewable energy. It is also known as a possible biofilter for extraction of soil and water contaminants. The current study presents preliminary results on heavy metal ion uptake (Cu²⁺, Cr³⁺, Zn²⁺) by living plants of Salix viminalis. In relation, a new concept of further utilization of ion-enriched wood is proposed as raw material for carbon-based catalyst fabrication by heat treatment of metal-impregnated partly dried biomass. Particular attention is paid to the distribution of heavy metal ions along the plant stem, since one intends to exploit natural transport and distribution of metal ions in living plants. The uptake from water solution and subsequent accumulation of ions in plant tissues was investigated regarding the form in which ions were present in water solution. Accumulation rates were higher for ion complexes with EDTA in comparison to aqua complexes.

Wydawca

-

Rocznik

Tom

18

Numer

3

Opis fizyczny

p.507-511,fig.,ref.

Twórcy

  • Faculty of Chemistry, Nicholas Copernicus University, Gagarina 7, 87-100 Torun, Poland
  • Faculty of Chemistry, Nicholas Copernicus University, Gagarina 7, 87-100 Torun, Poland
autor
  • Faculty of Chemistry, Nicholas Copernicus University, Gagarina 7, 87-100 Torun, Poland

Bibliografia

  • 1. CHRISTERSSON L., SENNERBY-FORSSE L. The Swedish program for intensive short rotation forests. Biomass Bioenergy 6, 141, 1994.
  • 2. HYTONEN J. Ten years biomass production and stand structure for Salix ‘aquatica’ energy forest plantation in southern Finland. Biomass Bioenergy 8, 63, 1995.
  • 3. HEINSOO K., SILD E., KOPPEL A. Estimation of shoot biomass productivity in Estonian salix plantations. For. Ecol. Manage. 170, 67, 2002.
  • 4. LABRECQUE M., TEODORESCU T. I., DAIGLE S. Biomass productivity and wood energy of Salix species after 2 years growth in SRIC fertilized with wastewater sludge. Biomass Bioenergy 12, 409, 1997.
  • 5. BULLARD M. J., MUSTILL S. J., MCMILLAN S. D., NIXON P. M. I., CARVER P., BRITT CH. P. Yield improvements through the modification of planting density and harvest frequency in short rotation coppice Salix. Yield response in two morphologically diverse varieties. Biomass Bioenergy 22, 15, 2002.
  • 6. JIRJIS R. Effect of particles size and pile height on storage and fuel quality of comminuted Salix viminalis. Biomass Bioenergy 28, 193, 2005.
  • 7. VERWIJST T, Stool mortality and development of a competitive hierarchy in a Salix viminalis coppice system. Biomass Bioenergy 10, 245, 1996.
  • 8. VENTURI P., GIGLER J. K., HUISMAN W. Economical and technical comparison between herbaceous (Miscanthus X giganteus) and woody energy crops (Salix viminalis). Renewable Energy 16, 1023, 1999.
  • 9. BORJESSON P., GUSTAVSSON L., CHRISTERSSON L., LINDER S. Future production and utilisation of biomass in Sweden: potentials and CO2 mitigation. Biomass Bioenergy 13, 399, 1997.
  • 10. MIRCK J., ISEBRANDS J. G., VERWIJST T., LEDIN S. Development of short-rotation willow coppice system for environmental purposes in Sweden. Biomass Bioenergy 28, 219, 2005.
  • 11. PULFORD I. D., WATFORD C., Phytoremediation of heavy metal-contaminated lands by trees – a review. Environ. Int. 29, 529, 2003.
  • 12. BERNDES G., FREDRIKSON F., BORJESSON P. Cadmium accumulation and Salix-based phytoextraction on arable land in Sweden. Agric. Ecosyst. Environ. 103, 207, 2004.
  • 13. LANDBERG T., GREGER M. Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Appl. Geochem. 11, 175, 1996.
  • 14. MEERS E., LAMSAL S., VERVAEKE P., HOPGOOD M., LUST N., TACK F. M. G. Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Environ. Pollut. 137, 354, 2005.
  • 15. NISSEN L. R., LEPP N. W. Baseline concentrations of copper and zinc in shoot tissues of a range Salix species. Biomass Bioenergy 12, 115, 1997.
  • 16. FIRCKS Y., ROSEN K., SENNERBY-FORSSE L. Uptake and distribution of 137Cs and 90Sr in Salix viminalis plants. J. Environ. Radioact. 63, 1, 2002.
  • 17. BLAYLOCK M. J., SLAT D. E., DUSHENKOV S., ZAKHAROVA O., GUSSMAN C., KAPULNIK Y., ENSLEY B. D., RASKIN I. Enhanced accumulation of Pb in Indian mustard by soil applied chelating agents. Environ. Sci. Technol. 31, 860, 1997.
  • 18. DJINGOVA R., KULEFF I. Instrumental techniques for trace analysis. In MARKET B., FRIESE K. (Eds.). Trace metals in the Environment 4: Trace Elements – Their Distribution and Effects in the Environment; Elsevier: Amsterdam, pp. 137-187, 2002.
  • 19. SANDER M-L, ERICSSON T. Vertical distributions of plant nutrients and heavy metals in Salix viminalis stems and their implications for sampling. Biomass Bioenergy 14, 57, 1998.
  • 20. LUKASZEWICZ J. P., WESOŁOWSKI R. P. Fabrication of molecular-sieve-type carbons from Salix viminalis. Microporous and Mesoporous Mater. 116, 723, 2008.
  • 21. ZHANG T., WALAWENDER W. P., FAN L. T., FAN M., DAUGAARD D., BROWN R. C. Preparation of activated carbon from forest and agricultural residues through CO₂ activation. Chem. Eng. J. 105, 53, 2004.
  • 22. ZIELINSKA A. Master Thesis, Nicholas Copernicus University, Faculty of Chemistry, Toruń (Poland), 2006.
  • 23. CYGANIUK A., KLIMKIEWICZ R., LUKASZEWICZ J. P. Biotechnological fabrication of LaMnO₃-carbon catalyst for n-butanol conversion to ketones. (submitted).
  • 24. YUASA M., SHIMANOE K., TERAOKA Y., YAMAZOE N., Preparation of carbon-supported nano-sized LaMnO₃ using reverse micelle method for energy-saving oxygen reduction cathode. Catal. Today 126, 313, 2007.
  • 25. MARUYAMA J., ABE I. Structure control of a carbonbased noble-metal-free fuel cell cathode catalyst leading to high power output. Chem. Commun. 2879, 2007.
  • 26. LUKASZEWICZ J. P., IMAIZUMI S., YUASA M., SHIMANOE K., YAMAZOE N. New approach towards preparation of efficient gas diffusion-type oxygen reduction electrode. J. Mater. Sci. 41, 6215, 2006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-48a80b3b-fda1-4fe2-afeb-60be41ea9933
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.