PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2000 | 47 | 6 |

Tytuł artykułu

Zmiany strukturalne i fizjologiczne w ukladach biologicznych indukowane pulsacyjnym polem elektrycznym

Treść / Zawartość

Warianty tytułu

Języki publikacji

PL

Abstrakty

EN
Investigations on the influence of pulsatory electric field (PEF) involve its impact on a wide scope of biological structures and different groups of microorganisms. The field activity is exerted e.g. on each enzymes, cellular organella, and all living organisms (bacteria, fungi, tissues cells of higher organisms). So far, the widest perspectives of practical application appeared in PEF technology to sterilize the food products. At present, another practical use of PEF is to increase the efficiency of transformed genes. Moreover, the influence of PEF on level of synthesis of different metabolites (citric acid, alcohol) is also insufficiently recognized. Undoubtedly a better knowledge on acting and the effects of PEF on various biological processes may offer an important way to improve the efficiency of many metabolites; thus, the further more penetrating research of the question would be necessary.

Wydawca

-

Rocznik

Tom

47

Numer

6

Opis fizyczny

s.41-55,rys.,tab.,bibliogr.

Twórcy

autor
  • Uniwersytet Marii Curie-Sklodowskiej, ul.Akademicka 19, 20-033 Lublin
autor
autor

Bibliografia

  • [1] Astumian D., Berg H. 1991. Direct electric field effects and sequeutial processes in biosystems. Bioelectrochem. Bioenerg. 25: 455-462.
  • [2] Benz R. 1988. Structure and function of porins from Gram-negative bacteria. Rev. Microbiol. 42: 359-393.
  • [3] Berg H. 1987. Electrotransfection and electrofusion of cells and electrostimulation of their metabolism. Stud. Biophys. 119: 17-20.
  • [4] Buechler L.K., Kusumoto S., Zhang H., Rosenbuch J.P. 1991. Plasticity of Escherichia coli porins channels. J. Biol. Chem. 266: 2446-2450.
  • [5] Cogalniceanu G., Radu M., Fologea D., Moisoi N., Brezeanu A. 1998. Stimulation of tobacco shoot regeneration by alternating weak electric field. Bioelectrochem. Bioenerg. 44: 257-260.
  • [6] Craane-Van Hinsberg I.W.H.M., Verhoef J.C., Spies F., Bouwstra J.A., Gooris G.S., Junginger H.E., Bodde H.E. 1997. Electroperturbation of the human skin barrier in vitro: II. Effects on stratum comeum lipid ordering and ultrastructure. Micros. Res. Techn. 37: 200-213.
  • [7] Delcour A.H. 1997. Function and modulation of bacterial porins: insights from electrophysiology. FEMS Microbiol. Lett. 152(2): 115-123.
  • [8] Eynard N., Rodriguez F., Trotard J., Teissie J. 1998. Electrooptics studies of Escherichia coli electropulsation: orientation, permeabilization, and gene transfer. Biophys. J. 75: 2587-2596.
  • [9] Fiedurek J. 1999. Influence of a pulsed electric field on the spores and oxygen consumption of Aspergillus niger and its citric acid production. Acta Biotechnol. 19: 179-186.
  • [10] Harrison S.L., Barbosa-Canovas G.V., Swanson B.G. 1997. Saccharomyces cerevisiae structural changes induced by pulsed electric field treatment. Lebensm.-Wiss. u.-Technol. 30(3): 236-240.
  • [11] Hülsheger H., Niemann E. 1980. Lethal effects of high-voltage pulses on Escherichia coli K12. Radiation Environ Biophys. 18: 281-288.
  • [12] Hülsheger H., Potel J., Niemann E. 1981. Killing of bacteria with electric pulses of high field strenght. Radiation Environ. Biophys. 20: 53-65.
  • [13] Ishiguro J., Kobayashi W. 1995. A practical method for fission yeast transformation by electroporation. Jpn. J. Genet. 70: 1-6.
  • [14] Jayamar S., Castle G., Margaritis A. 1992. Kinetics of sterilization of Lactobacillus brevis cells by the application of high-voltage pulses. Biotechnol. Bioeng. 40: 1412-1420.
  • [15] Johnson P.G., Gallo S.A., Sek Wen Hui, Oseroff A.R. 1998. A pulsed electric field enhances cutaneous delivery of methylene blue in excised full-thickness porcine skin. J. Invest. Dermatol. 111(3): 457-463.
  • [16] Karba R., Semrov D., Vodownik L. 1974. DC electrical stimulation for chronic wound healing enhancement. Part 1-2. Clinical study and determination of electric field distribution in the numerical wound model. Bioelectrochem. Bioenerg. 43: 265-270.
  • [17] Klavinsh I.E., Galvanovsky Y.Y., Dreimanis A.P. 1991. Low-frequency electromagnetic pulses enhance Ca2+ uptake by chick small intestine in vitro. Bioelectrochem. Bioenerg. 25: 437-445.
  • [18] Knorr D., Geulen M., Grahl T., Sitzmann W. 1994. Food application of high electric field pulses. Trends Food Sci. Technol. 5: 71-77.
  • [19] Krauthamer V., Jones J.L. 1997. Calcium dynamics in culture heart cells exposed to defibryllatore-typ electric shocks. Life Science 60: 1977-1985.
  • [20] Lambert H., Pankov R., Gauthier J.H., Hancock R. 1990. Electroporation- mediated uptake of proteins into mammalian cells. Biochem. Cell. Biol. 68: 729-734.
  • [21] Lewicki P. 1998. Tendencje w rozwoju technologii żywności. Przem. Spoż. 9: 31-35.
  • [22] Liu X., Yousef A.E., Chism G.W. 1997. Inactivation of Escherichia coli O157:H7 by the combination of organic acids and pulsed electric field. J. Food Safety 16: 287-299.
  • [23] McCaig C.D. 1988. Nerve guidence a role for bio-electric fields. Prag. Neurobiol. 30: 449-468.
  • [24] McCaig C.D. 1990. Nerve growth in a smal applied electric field and the effect of pharmacological agents on rate and orientation. J. Cell Sci. 95: 617-622.
  • [25] McCaig C.D., Rajnicek A.M. 1991. Electric field, nerve growth and nerve regeneration. Exp. Physiol. 76: 473-494.
  • [26] Palaniappan S., Sastry S., Ritcher E. 1990. Effect of electricity on microorganisms: a review. J. Food Proc. Pres. 14: 393-414.
  • [27] Pawłowski P., Fikus M. 1989. Bioelectrorheological model of the cell. I. Analysis of stress and deformations. J. Theor. Biol. 137: 321-337.
  • [28] Pawłowski P., Fikus M. 1991. Shear deformation of the spherical shell acted on by an external electric field: possible application to cell deformation experiments. Z. Natürforsch. 46c: 487-494.
  • [29] Pawłowski P., Fikus M. 1993. Bioelectrorheological model of the cell. 4. Analysis of the extensil deformation of cellular membrane in alternating electric field. Biophys. J. 65: 535-540.
  • [30] Pawłowski P., Szutowicz J., Marszałek P., Fikus M. 1993. Bioelectrorheological model of the cel. 5. Electroporation and electrodestruction of cellular membrane in alternating electric field. Biophys. J. 65: 541-549.
  • [31] Pawłowski P., Szutowicz I., Różycki S., Zieliński J., Fikus M. 1996. Bioelectrorheological model of the cell. 6. Experimental verification of the rheological model of cytoplasmic membrane. Biophys. J. 70: 1024-1026.
  • [32] Pothakamury U.R., Monsalve-Gonzalez A., Barbosa-Canovas G.V, Swanson B.G. 1995. High voltage pulsed electric field inactivation of Bacillus subtilis and Lactobacillus delbrueckii. Rev. Esp. Cienc. Tecnol. Aliment. 35(1): 101-107.
  • [33] Pothakamury U.R, Monsalve-Gonzalez A., Barbosa-Canovas G.V., Swanson B.G. 1995. Inactivation of Escherichia coli and Staphylococcus aureus in model foods by pulsed electric field technology. J. Food Research Int. 28(2): 167-171.
  • [34] Poznański J., Pawłowski P., Fikus M. 1992. Bioelectrorheological model of the cell. 3. Viscoelastic shear deformation of the membrane. Biophys. J. 61: 612-620.
  • [35] Prasanna G.L., Panda T. 1997. Electroporation: basic principles, practical considerations and applications in molecular biology. Bioproc. Engin. 16: 261-264.
  • [36] Prasanna G.L., Panda T., Rao P.P. 1997. Transformation of intact cells of Saccharomyces cerevisiae by square wave pulses using castellated microelectrodes. Bioproc. Engin. 16: 265-268.
  • [37] Sale A., Hamilton W. 1967. Effect of high electric field on microorganism. I. Killing of bacteria and yeast. Biochem Biophys. Acta 148: 781-788.
  • [38] Santhanam K.S.V., Haram N.S., Rao L. 1997. Electric field effects on bioluminescent cells of Lampito mauritii: electrofusion and enhancement of bioluminescence intensity. Bioelectrochem. Bioenerg. 43: 197-204.
  • [39] Schindler H., Rosenbusch J.P. 1981. Matrix protein in planar membranes: Clusters of channels in native environmental and their funcional reassembly. Proc. Natl. Acad. Sci. USA 78: 2302-2306.
  • [40] Serpersu E.H., Tsong T.Y. 1984. Activation of electrogenic Rb+ transport of (Na,K)-ATPase by an electric field. J. Biol. Chem. 259: 7155-7162.
  • [41] Simpson J., Brady D., Rollan A., Barron N., McHale L., McHale A.P. 1995. Increased ethanol production of electric-field stimulated Kluyveromyces marxianus IMB3 during growth on lactose-containing media at 45°C. Biotechnol. Lett. 17: 757-760.
  • [42] Tsong T.Y., Kinoshita K. 1985. Use of voltage pulses forthe pore opening and drug loading and the subsequent resealing of red blood cells. Bibl. Haematol. (Basel). 51: 1081-14.
  • [43] Tsong T.Y. 1992. Molecular recognition and processing of periodic signals in cells: study of activation of membrane ATPases by alternating electric fields. Biochim. Biophys. Acta. 1113: 53-70.
  • [44] Vega-Mercado H., Powers J.R., Barbosa-Canovas G.V., Swanson B.G. 1995. Plasmin inactivation with pulsed electric fields. J. Food Science 60: 1143-1146.
  • [45] Vienken J., Jeltsch E., Zimmermann V. 1978. Penetration and entrapment of large particles in erythrocytes by electrical breakdown techniques. Cytobiol. 182-196.
  • [46] Yaseen M., Pedley K., Howell S. 1982. Regulation of insulin secretion from ilets of Langerhans rendered permeable by electric discharge. Biochem J. 206: 81-87.
  • [47] Yun S-E., Yu H., Berg H. 1998. Electric field effects with alcohol dehydrogenase. Electro-Magnetobiol. 17: 421-426.
  • [48] Zhang Q., Chang F., Barbosa-Canovas G., Swanson B. 1994. Inactivation of Escherichia coli and Staphylococcus aureus in model foods by pulsed electric field technology. Food Preservation 2000 Proceedings, Natick M.
  • [49 ]Zimmermann U. 1986. Electrical breakdown, electropermeabilization and electrofusion. Rev. Physiol. Biochem. Pharmacol. 105: 175-256.
  • [50] Zimmermann U., Vienken J., Pilwat G. 1980. Development of drug carrier system: electricfield induced effects in cell membranes. Bioelectrochem. Bioenerg. 7: 553-574.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-45a57c1b-7f43-43dc-b798-0444834f758a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.