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Generating data in models including direct 
and maternal dominance effects 

Monchai DUANGJINDA, Ignacy MISZTAL, J. Keith BERTRAND 

Department of Animal and Dairy Science, University of Georgia, Athens, USA 

Abstract. Algorithms are presented to simulate multiple generations of animal data by 
a model including direct additive genetic, maternal additive genetic, direct dominance, 
maternal dominance and permanent environmental effects. Dominance effects were 
computed as parental subclasses. Testing involved five single trait models that included 
direct contemporary group and direct additive effects, and different combinations of 
maternal, permanent environmental, and dominance effects. Simulated populations in- 
cluded 5 generations of animals and 20 contemporary groups per generation. The base 
population contained 200 sires and 600 dams. Variance components were estimated by 
Average-Information Restricted Maximum Likelihood (AIREML). No significant bias 
was observed. The simulation algorithms can be used in research involving dominance 
models, such as evaluation of mating systems exploiting special combining abilities of 
prospective parents. 
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Introduction 

A standard model used for beef cattle evaluation includes additive genetic, mater- 
nal genetic and permanent environmental effects. Due to advances in computing 
Power, dominance effects also can be included in the model; however, the impact 
of accounting for these effects in the evaluation is not well known. This impact 
may be partly studied by simulation. Generation of data with dominance effects 
for each offspring is not straightforward since the effects come from particular 
mating of sires and dams. Generation of data with simple direct additive effects 
was described previously (SORENSEN, KENNEDY 1984, Van Der WERF, de BOER, 
1990). This paper presents an algorithm to generate data with dominance and ma- 
ternal dominance effects for simulation studies. 
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Simulation model 

The following single trait models are of interest in beef cattle: 

Model I: y=XB+Zja+te 

Modelll: y=XB+Z,at+Wpte 

Моде! Ш: y=XB+Z,a+Mim+e 

Моде У: у=хХВ+Йа+йа+е 

Моде! У: у=хХВ+йа+Мт + Ир+е 

Model VI: y=XB+Z,a+M,m +Zd +Wp+e 

Model VII: y=XB + Zja + M,m + Zd +Mq +Wpte 

where y = vector of observations, = vector of fixed effects, a = random vector of 

additive effects, m = random vector of maternal effects, d = random vector of 

dominance effects, q = random vector of maternal dominance effects, p = random 

vector of maternal permanent environmental effects, e = random vector of resid- 

ual effects, and X, Z;, Z2, M;, M2, and W are known incidence matrices relating re- 

cords to their respective fixed and random effects. 

The variance structure for the last model 1s: 

Var = 

Ac, Ac „0 0 0 | 
fa | am 

Ac „Ao, 0 0 0 
m 

d 0 0 Do, Do, 0 

0 0 0 Do,Do, 

    P||o 0 0 0 Ic? 
\e J > 

ę0 0 0 0 0 1.) 

h 2,6,,,04,6,,0,,0, = direct additi | additive, direct domi- where 6,0, 0g>0g>0p;O0, = QIrECI a itive, maternal additive, direct do 

nance, maternal dominance, maternal permanent environmental, and residual 

variances, G ,,, = covariance between direct and maternal additive effects, 6 g, = 

covariance between direct and maternal dominance effects, A = numerator rela- 

tionship matrix for additive genetic effect, D = numerator relationship matrix for 

dominance genetic effect. For other models, the (co) variance structure is a subset 

of the last model. 

    

Simulation strategies 

The following steps are used in the simulation: 

1) define all variance-covariance structures, 

2) generate fixed effects, 

3) generate random genetic effects for sires and dams of the base population; then 

store in separate arrays,
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4) generate offspring for next generation by randomly mating sires and dams, 
5) store genetic effects of offspring in an “animal array”, 
6) generate sex for each offspring, then add genetic effects to “sire array” if 

the offspring is male, and to “dam array” if the offspring is female, 
7) generate random residual effect for each offspring, 
8) generate offspring records by combining the generated effects under the desir- 

able model, 

9)in each generation, apply one of the following selection type: no selection, ran- 
dom selection, selection based on phenotype, selection based on BLUP, 

10) write data and pedigree files. 

Random number generators 

Normal random variables were generated by the polar method (ROSS 1997) and 
based on uniform pseudo-random numbers that are generated by the shifting 
method and the multiplicative congruential method (MARSAGLIA et al. 1990). 

Maternal effects generating strategies 

Since maternal and additive effects are correlated, these effects cannot be gener- 
ated independently but can be generated jointly as follows: 
- Let 

2 
O, 6 -| a z 

O am Op 

where V js a variance-covariance matrix of direct and maternal additive effects. 
Decompose V by Cholesky factorization: V= LL’. 
~ Generate Hy containing two independent normal variables: 

H=|" N(0,I =|, |~N(OD. 
2 

~ Multiply Z by H, then LH becomes: 

u 

| | — N(0, V). 
т 

Strategy for generation of dominance effects 

Dominance effects can be generated from full-sib effects based on parental sub- “asses (HOESCHELE, VANRADEN 1991). Because dominance effects are not in-
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herited through individuals, these can only be computed after knowing all matings 

in each generation. The dominance effect (d;) can be expressed as: 

d, = FT sd + ba (1) 

where /, „is fullsib effect produced by combination of genes from sire s and dam d, 

and, is sampling error due to dominance effect. In addition, the maternal domi- 

nance effect can be expressed as: 

Gi = Ssadd + Vg, (ii 

where 2,4 aq is maternal full-sib effect produced by combination of genes from sire 

and dam of the dam, and 6, is sampling error due to maternal dominance effect. 

Since dominance and maternal dominance effects are correlated, full-sib effects 

can be described as having the following distribution: 

f; l c ба с, o 

* |-N(0,- DNO] 3) 
Śsd,dd 4 Ogg Są Og Og 

where o', is direct full-sib variance, o', is maternal full-sib variance, o i 

covariance between direct full-sibs and maternal full-sibs, and 

|. maż oF “a ) 

da 4 O dą Og 

For a particular mating, f,, and g, can be expressed in terms of full-sib effects and 

maternal full-sib effects contributions from parental subclasses between: 1) site 

and parents of dam, 2) dam and parents of sire, and 3) parents of sire and parents of 

dam. Following HOESCHELE and VANRADEN (1991): 

fsa = 0.5 1; а + Л; аа w 55,А + J asa) = 0.25 15 за + J ssdd + Faeze + Лаз аа ) +6; 

(i) 

where ss, ds, sd, and dd are sire of sire, dam of sire, sire of dam, and dam of dam, 

respectively, and e; is a sampling error due to full-sib effect. For the maternal 

full-sib effect: 

ааа = 0-5 8 ;азаа + В‹алааа + 8 зала + 8 вала} — 0-25 & за заа + 8 за + 

tZdsdsdd " £ dsd ddd ) +7; (wv) 

where ssd, dsd, sdd, and ddd are sire of sire of dam, dam of sire of dam, sire of dat 

of dam, and dam of dam of dam, respectively, and r; is a sampling error due to m* 

ternal full-sib effects. 
The equation (iii) and (vi) can be expressed as: 

fa = b fart i, (у 

and 

855аа = С ‘Spar + Fi U
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where: b'= [.5 .5 .5 .5 -.25 —.25 —.25 —.25] ,c =[.5.5.5.5—,25—25—25 —.25]', 
fr = parental full-sib subclasses as described in (iii), &par = Maternal full-sib sub- 
classes as described in (iv). 

To generate the full-sib effect, variances for a particular subclass and sampling 
error have to be defined. From equation [v], notice that variances for parental 
full-sib subclasses become: 

ts bf ar + e, bf ar е, Var( a )=Var(| , 7 )=Var(| , 7 )+Var(| |) 
dsd,dd Ci Ś par + п С} © рак 7 

Note that: 

bP par b,Fbo, bj Feo ,, 
Var(| , )=| . | 

с Ś par c,Fb,o ig c,Qc,o; 

Therefore: 

Var(b, f„,) =b;Var(f,,)b, =(b,Fb, Ror [vii] 

Var(c, g,,)=c,Var(g,,,)e, =(c,Qc,)*o3 

Cov(biS par>€i8 par) = СОЧ ар, В ри, дс py = (В, Ес, )* 9 ,, 
and, 

2 2 р’ e, о, 6 b,Fb,o,y b,Fc,o 7 Va || =| 7 и ит | и [viii] 
4 Og Oz c,Fc,o „ c,Qc;o; 

where F, and Q are relationship matrices among direct full-sib subclasses, mater- 
nal full-sib subclasses, and direct and maternal full-sib subclasses, respectively. 

I) F for computing direct full-sib variance is: 

  

  

5,54 s,dd ss,d ds,d ss,sd ss,dd ds,sd ds,dd 

ssd 1.0 0.0 0.25 0.25 0.5 0.0 0.5 0.0 
sdd 0.0 1.0 0.25 0.25 0.0 0.5 0.0 0.5 
Sid 0.25 0.25 1.0 0.0 0.5 0.5 0.0 0.0 
ds,d 0.25 0.25 0.0 1.0 0.0 0.0 0.5 0.5 
$5.54 0.5 0.0 0.5 0.0 1.0 0.0 0.0 0.0 
ss,dą 0.0 0.5 0.5 0.0 0.0 1.0 0.0 0.0 
ds,sd 0.5 0.0 0.0 0.5 0.0 0.0 1.0 0.0 
ddd | 0.0 0.5 0.0 0.5 0.0 0.0 0.0 1.0  
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u) Q for computing maternal full-sib variance is: 

sd,sdd sd,ddd ssd,dd dsd,dd___ssdsdd__ssd,ddd_ = dsd,sdd_— dsd ddd 
  

sd,sdd 1.0 0.0 0.25 0.25 0.5 0.0 0.5 0.0 

sd,ddd 0.0 1.0 0.25 0.25 0.0 0.5 0.0 0.5 

ssd,dd 0.25 0.25 1.0 0.0 0.5 0.5 0.0 0.0 

dsd,dd 0.25 0.25 0.0 1.0 0.0 0.0 0.5 0.5 

ssd,sdd 0.5 0.0 0.5 0.0 1.0 0.0 0.0 0.0 

ssd,ddd 0.0 0.5 0.5 0.0 0.0 1.0 0.0 0.0 

dsd,sdd 0.5 0.0 0.0 0.5 0.0 0.0 1.0 0.0 

dsd,ddd 0.0 0.5 0.0 0.5 0.0 0.0 0.0 10   
Computing strategy 

Generating dominance effects for each animal requires values of dominance ef. 
fects for particular subclasses. The generation can be done as follows: 

1. For each particular mating, generate correlated effects for all parental 
full-sib and maternal full-sib subclasses as follows: 
— let 

2 
т“ 9“ |_|б7 бд 

4 - 2 
O dą ба O gg Og 

decompose 7 by Cholesky factorization: T = LL’; 
— generate H>,g containing independent normal variables, 

a= wan, where i= 1,...,8; 

— then LH becomes: 

LH = | | _ Tosa Msza Jada Tad Josa Jada Лиза Лем 

Lh, Śsdsdd Śsd,ddd Śssd.dd Śdsd,.dd Śssdsdd Śssd.ddd Sdsd,sdd &dsd,ddd 

2. Check for known direct parental full-sib subclasses and maternal full-sib 
subclasses computed previously: a) for known subclasses, replace f, j and qi; with 
known effects for subclass i and j; b) for unknown subclasses, store Ji, and q,,inar 
rays for particular subclass ź and j. 

3. Compute the sampling error variance due to direct and maternal full-sibs by: 
a) constructing coefficients b, for all direct parental subclasses, and c, for all me 
ternal subclasses by setting zero to the related unknown subclass effects in step 2 
above; b) compute direct and maternal full-sib variance for particular mating us 
ing equation (vii); c) compute sampling error variance due to direct and maternal 
full-sib using equation (viii).
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4. Generate sampling errors due to direct and maternal full-sib for the mating 
using sampling error variance from the previous step as: 

e. e. 

| |- NGO Va | 
7 7, 

5. Complete the equation (iii) and (iv), using generated effects from step 2 
and 4, then the full-sib effect becomes: 

| | s p Лу аа J ssd fdsa Jas J sad J desa Ла аа | + | 

r 
I 

854 аа Śsd,sdd Śsd,ddd Śssd.dd Sdsd,dd Śssdsdd Śssd ddd Edsd,sdd Ś dsd ddd 

6. Store the generated direct and maternal full-sib effects in the array for a par- 
ticular s and d, 

7. Generate sampling errors due to direct and maternal dominance effect: 
— let 

2 
3| ба O gą 

= es > b 

q 

T = 

4 си с 
and decompose 7 by Cholesky factorization: T = LL”’ 
- generate Fx, containing two independent normal variables, 

h, H = — N(0, I), 
hy 

- later multiply L by H, then LH becomes: 

фа 
— N(0, T). 

8. Complete equation i and ii, so that finally: 

e Jsa Oa, = + 
qi Śsd,dd da, 

1. Generate effects of contemporary groups (Cg), Sex, and generation (Gen) 
for offspring: 

Algorithms 

Cg | N(0,6 c ) 

Sex, » ~N(0,02,) 

Сет. ~N(0,0 gen) 

Where Neg 1s the number of contemporary groups, n, is the number of generations.
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2. Generate correlated additive and maternal effects for sires and dams for base 
population by algorithms described in the random number generator section: 

и; CH O am Ug с, O am 
m — N(0, 2 ), т — N(0, 2 ) 

5 Sam Om d Sam Om 

where u, and m, are additive and maternal effects for sire, uy and my are additive 
and maternal effects for dam, s is the number of sires and d is the number of dams 
in the base population; store the effects in separate arrays. 

3. Generate maternal permanent environment effects for dams 

PE, — N(0,6,,). 

4. Randomly select sire and dam for each generation under the following as- 
sumptions: a) sire and dam must be born (generated) before offspring; b) unlim- 
ited mating for each sire; c) each dam can be used only once in each generation 
and cannot have twins; d) all females have full conception rates, e) offspring sex 
will be randomly generated based on 50% chance. 

5. Generate additive and maternal effects for each offspring: 

  

  

u.t+u _ “s d 
uj = 2 +O 4, 

m+m — $ а 
т; = 2 +ÓM, 

where u, and m, are additive and maternal effects for offspring, and $4; and $y are 

Mendelian samplings deviated from average additive and maternal effects gener- 
ated as: 

фа, ха. 5. бт | 
bu, Зи в? | 

To account for Mendelian samplings with parental inbreeding, generate: 

фа, 1 l l с, O am | ROSE p 
о ат 6 m 

where F, and Fy are inbreeding coefficients for sire and dam of offspring i. 

6. Generate maternal permanent environment effects for offspring. It will be 

used only if animal i is a dam in a later generation 

PE, — N(0,67,). 

7. Generate effects of contemporary group, sex, and generations from step ! 

for each offspring. Store u; to u, or u, if offspring sex is male or female respec 

tively, and store m; to m, or mq if offspring is male and female respectively. There- 

fore offspring can be used as sire or dam for the next generation.
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8. Generate dominance and maternal dominance effects by the method de- 
scribed in the previous section 

2 а. 0, 6 
| |-va b. 
Ч; O dą 07 

9. Generate observation for offspring i by combining all effects plus overall 
mean and unexplained error. 

fi=H+u, +m, +d, +q, +PE, +Cg, +Sex, +By, +Err, , 

where Fi is record value, u is overall mean, u, is additive direct effect, m, is addi- 
tive maternal effect, d; is parental dominance direct effect, ga is parental domi- 
nance maternal effect, PE, is permanent environmental maternal effect, Cg, is 
contemporary group effect, Sex, is sex effect, By; is birth year effect, and Err, is re- 
sidual effect distributed as N(0,02). Store information about animals with record 
in array for subsequent selection. 

10. Create a data file and a pedigree file to store information. 
11. Store effects of male offspring in “sire array”, and female in “dam array” 

for use in the next generation, 
12. Repeat step 4 to 12 for the next generation. 

Program testing 

The algorithms were implemented in the program SIMF90 (DUANGJINDA et al., 
2000) in FORTRAN 90. To verify the correctness of simulation, data were simu- 
lated under models mentioned earlier using the following conditions: 

I. Records of animals were generated for 5 generations, with 20 contemporary 
groups per generation. The base population contained 200 sires and 600 dams, and 
the approximate number of animals in the pedigree was 10,000. 

2. Estimates of variance components from each model were averaged from 
30 replicates. 

3. Contemporary groups, sex, and generations were treated as fixed effects by 
using the same seeds for the particular effects; therefore, the fixed effects would 
be the same for all replications. 

4. Total variance for all random effects are 100 and variances for contemporary 
SToups and sex were 10 and 20, respectively. 

5. Variance components for particular models were estimated by the method of 
Average Information Restricted Maximum Likelihood (AIREML) (JENSEN et al. 
1996) using the program AIREMLF90 (TSURUTA, MISZTAL 1999).



Table 1. Average estimates and empirical standard error of variance component estimates 
over 30 replicates by REML from various animal models simulated from non-selected 
populations 
  

  

Моде!" Тме Estimate? SE‘ 

Model I 

с 70 70.9 0.5 

с? 30 29.4 0.7 

Model II 

с? 60 60.8 0.5 

с? 30 29.2 0.6 

o, 10 10.4 0.5 

Model III 

с: 60 60.5 0.7 

с? 30 29.3 0.5 

с” 15 15.4 0.7 

Som -5 -5.2 0.7 

Model IV 

a 65 65.8 1.1 

с? 30 30.2 0.6 

o, 5 5.4 1.0 

Model V 

с 50 50.5 0.5 

o; 30 30.3 0.5 

CH 15 14.4 0.6 

O am -5 -5.3 0.6 

ch 10 10.7 0.4 
  

— 

. . we a . SE . z 2 . * o? = error variance, o2 = direct additive genetic variance, с? = maternal additive genetic variance, o, = mater 

nal permanent environmental variance, o, = direct parental full-sib variance, с?) = direct and maternal ge- 

netic covariance. 

b non-significantly different from the true value (p > 0.10). 

© SE = standard error.  
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Results and conclusion 

The average and standard deviation of the estimates from 30 samples of all popu- 
lation sizes for each model are shown in Table 1. The results showed that the esti- 
mates were not significantly biassed from the true variance (p>0.10) for all 
models. Standard errors in the model with dominance effect were slightly higher 
than in other models. This indicates that larger data sets are needed to obtain good 
estimates of dominance variance. The algorithms proposed in this paper can be 
used for simulation studies on dominance effects in animal breeding. 
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