A substantial part of the energy of wake waves from high-speed ships sailing in shallow water is concentrated in nonlinear components which at times have a solitonic nature. Recent results of investigations into solitonic wave interactions within the framework of the Kadomtsev-Petviashvili equation and their implications for rogue wave theory are reviewed. A surface elevation four times as high as the counterparts occurs if the properties of the interacting waves are specifically balanced. The slope of the water surface may increase eightfold. The resulting structure may persist for a long time. Nonlinear wake components may exert a considerable influence on the marine ecosystem in coastal areas.
Brown E.D., Buchsbaum S.B., Hall R.E., Penhune J.P., Schmitt K. F., Watson K.M., Wyatt D.C., 1989, Observations of a nonlinear solitary wave packet in the Kelvin wake of a ship, J. Fluid Mech., 204, 263–293.
Casciola C.M., Landrini M., 1996, Nonlinear long waves generated by a moving pressure disturbance, J. Fluid Mech., 325, 399–418.
Chen X. -N., Sharma S.D., Stuntz N., 2003, Zero wave resistance for ships moving in shallow channels at supercritical speeds. Part 2. Improved theory and model experiment, J. Fluid Mech., 478, 111–124.
Cole S. J., 1985, Transient waves produced by flow past a bump, Wave Motion, 7 (6), 579–587.
Danish Maritime Authority, 1997, Report on the impact of high-speed ferries on the external environment, 22 pp.
Dean R.G., Dalrymple R.A., 2004, Coastal processes with engineering applications, Cambridge Univ. Press, Cambridge, 487 pp.
Drazin P.G., Johnson R. S., 1989, Solitons: an introduction, Cambridge Texts in Appl. Maths, Cambridge Univ. Press, Cambridge, 226 pp.
Duan W. -S., Shi Y. -R., Hong X. -R., 2004, Theoretical study of resonance of the Kadomtsev-Petviashvili equation, Phys. Lett. A, 323, 89–94.
Durkee P. A., Chartier R.E., Brown A., Trehubenko E. J., Rogerson S. D., Skupniewicz C., Nielsen K.E., 2000, Composite ship track characteristics, J. Atmos. Sci., 57, 2542–2553.
Dysthe K. B., Harbitz A., 1987, Big waves from polar lows?, Tellus A, 39, 500–508.
Erm A., Soomere T., 2004, Influence of fast ship waves on the optical properties of sea water in Tallinn Bay, Proc. Estonian Acad. Sci. Biol. Ecol., 53, 161–178.
Ertekin R.C., Webster W.C., Wehausen J.V., 1986, Waves caused by a moving disturbance in a shallow channel of finite width, J. Fluid Mech., 169, 275–292.
Forsman B., 2001, From bow to beach, SSPA Highlights No 3, 4–5.
Francisco M., Ebbesmayer C., Boatman C., Michelsen T., 1999, Resuspension and transport of contaminated sediments along the Seattle waterfront. Part 2. Resuspension and transport mechanisms, J. Marine Environ. Eng., 5, 67–84.
Freeman N.C., 1980, Soliton interactions in two dimensions, Adv. Applied Mech., 20, 1-37.
Froude W., 1877, Experiments upon the effect produced on the wave-making resistance of ships by length of parallel middle body, Trans. Inst. Naval Architects, 18, 77–87.
Gabl E.F., Lonngren K.E., 1984, On the oblique collision of unequal amplitude ion-acoustic solitons in a field-free plasma, Phys. Lett. A., 100, 153–155.
Gourlay T.P., 2001, The supercritical bore produced by a high-speed ship in a channel, J. Fluid Mech., 434, 399–409.
Hamer M., 1999, Solitary killers, New Sci., 163 (2201), 18–19.
Hammack J., McCallister D., Scheffner N., Segur H., 1995, Two-dimensional periodic waves in shallow water. Part 2. Asymmetric waves, J. Fluid Mech., 285, 95–122.
Hammack J., Scheffner N., Segur H., 1989, Two-dimensional periodic waves in shallow water, J. Fluid Mech., 209, 567–589.
Haragus-Courcelle M., Pego R. L., 2000, Spatial wave dynamics of steady oblique wave interactions, Physica D, 145, 207–232.
Havelock T.H., 1908, The propagation of groups of waves in dispersive media, with application to waves on water produced by a travelling distance, Proc. Roy. Soc. A-Mat., 81, 398–430.
Helm K., 1940, Tiefen- und Breiteneinflusse von Kanalen auf den Schiffswiderstand, [in:] Hydromechanische Probleme des Schiffsantriebs,Teil 2. Veroffentlichung der Vortrage,die anlaßlich des 25-jahrigen Bestehens der Hamburgischen Schiffbau-Versuchungsanstalt am 14. Juni 1939 gehalten wurden, G. Kempf, (Hrsg.), Verlag Oldenbourg, Munchen, 144–171.
Husig A., Linke T., Zimmermann C., 2000, Effects from supercritical ship operation on inland canals, J. Waterw. Port C-ASCE, 126, 130–135.
Kharif C., Pelinovsky E., 2003, Physical mechanisms of the rogue wave phenomenon, Eur. J. Mech. B-Fluid., 22, 603–634.
Kofoed-Hansen H., Kirkegaard J., 1996, Technical investigation of wake wash from fast ferries, Dan. Hydraulic Inst. Rep. No 5012, 41 pp.
Lamb H., 1997, Hydrodynamics, 6th edition, Cambridge University Press, 738 pp.
Lee S. J., Yates G.T., Wu T.Y., 1989, Experiments and analyses of upstreamadvancing solitary waves generated by moving disturbances, J. Fluid Mech., 199, 569–593.
Li Y., Sclavounos P.D., 2002, Three-dimensional nonlinear solitary waves in shallow water generated by an advancing disturbance, J. Fluid Mech., 470, 383–410.
Lighthill J., 1978, Waves in fluids, Cambridge Univ. Press, Cambridge, 504 pp.
Lindholm T., Svartstrom M., Spoof L., Meriluoto J., 2001, Effects of ship traffic on archipelago waters off the L˚angn¨as harbour in Aland,S W Finland, Hydrobiologia, 444 (1–3), 217–225.
Miles J.W., 1977, Resonantly interacting solitary waves, J. Fluid. Mech., 79, 171 –179.
Neuman D.G., Tapio E., Haggard D., Laws K. E., Bland R.W., 2001, Observation of long waves generated by ferries, Can. J. Remote Sens., 27, 361–370.
Parnell K.E., Kofoed-Hansen H., 2001, Wakes from large high-speed ferries in confined coastal waters: Management approaches with examples from New Zealand and Denmark, Coast. Manage., 29, 217–237.
Peterson P., 2001, Multi-soliton interactions and the inverse problem of wave crests, Ph.D. thesis, Tallinn Tech. Univ., 108 pp.
Peterson P., van Groesen E., 2000, A direct and inverse problem for wave crests modelled by interactions of two solitons, Physica D, 141, 316–332.
Peterson P., van Groesen E., 2001, Sensitivity of the inverse wave crest problem, Wave Motion, 34 (4), 391–399.
Peterson P., Soomere T., Engelbrecht J., van Groesen E., 2003, Soliton interaction as a possible model for extreme waves in shallow water, Nonlinear Proc. Geoph., 10, 503–510.
PIANC, 2003, Guidelines for managing wake wash from high-speed vessels, Report of the Working Group 41 of the Maritime Navigation Commission, International Navigation Association (PIANC), Brussels, 32 pp.
Porubov A.V., Tsuji H., Lavrenov I.V., Oikawa M., 2005, Formation of the rogue wave due to non-linear two-dimensional waves interaction, Wave Motion, 42 (3), 202–210.
Rabinovich A. B., Monserrat S., 1998, Generation of meteorological tsunamis (large amplitude seiches) near the Balearic and Kuril Islands, Nat. Hazards, 18, 27–55.
Schoellhamer D.H., 1996, Anthropogenic sediment resuspension mechanisms in a shallow microtidal estuary, Estuar. Coast. Shelf Sci., 43, 533–548.
Segur H., Finkel A., 1985, An analytical model of periodic waves in shallow water, Stud. Appl. Math., 73, 183–220.
Soomere T., 2004, Interaction of Kadomtsev-Petviashvili solitons with unequal amplitudes, Phys. Lett. A., 332, 74–81.
Soomere T., 2005a, Wind wave statistics in Tallinn Bay, Boreal Environ. Res., 10 (2), 103–118.
Soomere T., 2005b, Fast ferry traffic as a qualitatively new forcing factor of environmental processes in non-tidal sea areas: a case study in Tallinn Bay, Baltic Sea, Environ. Fluid Mech., 5 (4), 293–323.
Soomere T., Elken J., Kask J., Keevallik S., Kouts T., Metsaveer J., Peterson P., 2003a, Fast ferries as a new key forcing factor in Tallinn Bay, Proc. Estonian Acad. Sci. Eng., 9, 220–242.
Soomere T., Engelbrecht J., 2005a, Extreme elevations and slopes of interacting solitons in shallow water, Wave Motion, 41 (2), 179–192.
Soomere T., Engelbrecht J., 2005b, Extreme elevations and slopes of interacting Kadomtsev-Petviashvili solitons in shallow water, Proc. Rogue Waves 2004, M. Olagnon & M. Prevosto (eds.), Ser. Actes de Collogues No 39, Infremer, Brest, 92–101.
Soomere T., Engelbrecht J., 2006, Weakly two-dimensional interaction of solitons in shallow water, Eur. J. Mech. B-Fluid., (in press).
Soomere T., Kask J., 2003, A specific impact of waves of fast ferries on sediment transport processes of Tallinn Bay, Proc. Estonian Acad. Sci. Biol. Ecol., 52, 319–331.
Soomere T., Poder R., Rannat K., Kask A., 2005, Profiles of waves from high-speed ferries in the coastal area, Proc. Estonian Acad. Sci. Eng., 11, 245–260.
Soomere T., Rannat K., 2003, An experimental study of wind waves and ship wakes in Tallinn Bay, Proc. Estonian Acad. Sci. Eng., 9, 157–184.
Soomere T., Rannat K., Elken J., Myrberg K., 2003b, Natural and anthropogenic wave forcing in Tallinn Bay,Balt ic Sea, [in:] Coastal engineering VI, C.A. Brebbia, D. Almorza & F. López-Aguayo (eds.), WIT Press, Southampton, Boston, 273–282.
Tsuji H., Oikawa M., 2001, Oblique interaction of internal solitary waves in a twolayer fluid of infinite depth, Fluid Dyn. Res., 29, 251–267.
Tsuji H., Oikawa M., 2004, Two-dimensional interaction of solitary waves in a modified Kadomtsev–Petviashvili equation, J. Phys. Soc. Jpn., 73, 3034–3043.
Yih C. -S., Zhu S., 1989a, Patterns of ship waves, Q. Appl. Math., 47, 17–33.
Yih C. -S., Zhu S., 1989b, Patterns of ship waves II. Gravity-capillary waves, Q. Appl. Math., 47, 35–44.
Walker D.A.G., Taylor P.H., Taylor R. E., 2004, The shape of large surface waves on the open sea and the Draupner New Year wave, Appl. Ocean Res., 26, 73–83.
Wood W.A., 2000, High-speed ferry issues for operators and designers, Mar. Technol. SNAME News., 37, 230–237.
Wu T.Y., 1981, Long waves in ocean and coastal waters, J. Eng. Mech.-ASCE, 107, 501–522.
Wu T.Y., 1987, Generation of upstream advancing solitons by moving disturbances, J. Fluid Mech., 184, 75–99.
Wu D.M., Wu T.Y., 1982, Three dimensional nonlinear long waves due to moving surface pressure, Proc. 14th Symp. Naval Hydrodyn., Ann Arbor, Michigan, Nat. Acad. Press, Washington, DC, 103–129.