PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2009 | 68 | 4 |

Tytuł artykułu

Morphological and morphometric studies of the aorta, pulmonary trunk, and heart of streptozotocin-induced diabetic Wistar rats

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Micro-anatomical changes in the aorta, pulmonary trunk, and left ventricle of Wistar rats were studied after the administration of streptozotocin. Twenty adult Rattus norvegicus were randomly assigned into two groups (control and diabetic) of ten rats each. Diabetes mellitus was experimentally induced in the diabetic group of rats by daily intra-peritoneal administration of multiple doses of 40 mg/kg streptozotocin dissolved in 0.1 M sodium citrate buffer for five consecutive days. The control group was given the equivalent volume of citrate buffer. The animals were monitored for four weeks after streptozotocin administration. Post sacrifice, the left ventricle, aorta, and pulmonary trunk were excised, weighed, and fixed by immersion in 10% formol saline. The tissues were processed for paraffin embedding, and sections of 6 µm thickness were produced and stained with H & E for general histological observations, and Verhoeff-van Gieson elastic fibre stain to demonstrate elastic fibres in these cardiovascular structures. The data obtained were analyzed with descriptive and inferential statistics. Histopathological and morphometric examinations of the stained sections showed a significant increase in the thickness of the tunica intima of aorta (t = –7.49; df = 9; p < 0.05) and pulmonary trunk (t = –10.81; df = 9; p < 0.05) in diabetic rats (14.59 ± 1.189 μm and 11.307 ± 0.863 mm, respectively) when compared to that of the control group (3.62 ± 0.353 μm and 3.22 ± 0.244 μm, respectively). In addition, the distribution of elastic and collagen fibres was sparse in the hearts of the diabetic group when compared to that of the control group. The findings of this study demonstrated that diabetes mellitus might cause some alterations in the microanatomy of cardiovascular structures. (Folia Morphol 2009; 68, 4: 207–214)

Wydawca

-

Czasopismo

Rocznik

Tom

68

Numer

4

Opis fizyczny

p.207-214,fig.,ref.

Twórcy

autor
  • Obafemi Awolowo University, Ile-Ife, Nigeria
autor
autor
autor
autor

Bibliografia

  • 1. Aring AM, Jones DE, Falko JM (2005) Evaluation and prevention of diabetic Neuropathy. Am Fam Physician, 71: 2123–2130.
  • 2. Babu P, Sabitha K, Shyamaladevi C (2006) Therapeutic effect of green tea extract on oxidative stress in aorta and heart of streptozotocin diabetic rats. Chem Biol Interact, 162: 114–120.
  • 3. Bennett RA, Pegg AE (1981) Alkylation of DNA in rat tissues following administration of streptozotocin. Cancer Res, 41: 2786–2790.
  • 4. Berry C, Hamilton C, Brosnan M, Magill F, Berg G, McMurray J, Dominiczak A (2000) Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries. Circulation, 101: 2206–2212.
  • 5. Chattopadhyay RR, Bandyopadhyay M (2005) Effects of azadirachta leaf extract on serum lipid profile changes in normal and streptozotocin induced diabetic rats. Afr J Biomed Res, 8: 101–104.
  • 6. Chen YT, Zheng RL, Jia ZJ, Ju Y (1990) Flavonoids as superoxide scavengers and antioxidants. Free Radic Biol Med, 9: 19–20.
  • 7. Das D, Maulik N, Engelman R (2004) Redox regulation of angiotensin II signaling in the heart. J Cell Mol Med, 8: 144–152.
  • 8. Doi K, Sawada F, Toda G, Yamachika S, Seto S, Urata Y, Ihara Y, Sakata N, Taniguchi N, Kondo T, Yano K (2001) Alteration of antioxidants during the progression of heart disease in streptozotocin-induced diabetic rats. Free Radical Res, 34: 251–226.
  • 9. Drury RAB, Wallington EA (1980) Carleton’s histological technique. 5th Ed. Oxford University Press, Oxford.
  • 10. Fein F, Sonnenblick E (1985) Diabetic cardiomyopathy. Prog Cardiovasc Dis, 27: 255–270.
  • 11. Fiordaliso F, Li B, Latini R, Sonnenblick E, Anversa P, Leri A, Kajstura J (2000) Myocyte death in streptozotocin-induced diabetes in rats is angiotensin II-dependent. Lab Invest, 80: 513–527.
  • 12. Flack J, Hamaty M, Staffileno B (1998) Renin-angiotensin-aldosterone-kinin system influences on diabetic vascular disease and cardiomyopathy. Miner Electrolyte Metab, 24: 412–422.
  • 13. Gavin JR, Alberti KGMM, Davidson MB, DeFronzo RA, Drash A, Gabbe SG, Genuth S, Harris MI, Kahn R, Keen H, Knowler WC, Lebovitz H, Maclaren NK, Palmer JP, Raskin P, Rizza RA, Stern MP (2003) Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 26: S5–S20.
  • 14. Griendling K, Ushio-Fukai M (2000) Reactive oxygen species as mediators of angiotensin II signaling. Regul Pept, 91: 21–27.
  • 15. Gumieniczek A (2005) Modification of cardiac oxidative stress in alloxan-induced diabetic rabbits with repaglinide treatment. Life Sci, 78: 259–263.
  • 16. Kahn CR (1994) Banting lecture: insulin action, diabetogenes and the cause of type II diabetes. Diabetes, 43: 1066–1084.
  • 17. Kakkar R, Kalra J, Mantha S, Prasad K (1995) Lipid peroxidation and activity of antioxidant enzymes in diabetic rats. Mol Cell Biochem, 151: 113–119.
  • 18. Kakkar R, Mantha S, Kalra J, Prasad K (1996) Time course study of oxidative stress in aorta and heart of diabetic rat. Clin Sci (London), 91: 441–448.
  • 19. Kamuren Z, Sanders R, Watkins JB (2006) Low-carbohydrate diet and oxidative stress in diabetic and nondiabetic rats. J Biochem Mol Toxicol, 20: 259–269.
  • 20. Kröncke KD, Fehsel K, Sommer A, Rodriguez ML, Kolb-Bachofen V (1995). Nitric oxide generation during cellular metabolization of the diabetogenic N-methyl-nitroso-urea: streptozotocin contributes to islet cell DNA damage. Biol Chem Hoppe-Seyler, 376: 179–185.
  • 21. Liu KZ, Bose R, Mantsch H H (2002) Infrared spectroscopic study of diabetic platelets. Vib Spectrosc, 28: 131–136.
  • 22. Lu L, Quinn M, Sun Y (2004) Oxidative stress in the infarcted heart: role of de novo angiotensin II production. Biochem Biophys Res Commun, 325: 943–951.
  • 23. Malhotra A, Reich D, Nakouzi A, Sangiotensinhi V, Geenen D, Buttrick P (1997) Experimental diabetes is associated with functional activation of protein kinase Ce and phosphorylation of troponin I in the heart, which are prevented by angiotensin II receptor blockade. Circ Res, 81: 1027–1033.
  • 24. Malone JI, Cuthbertson DD, Malone MA, Schocken DD (2006) Cardio-protective effects of carnitine in streptozotocin-induced diabetic rats. Cardiovasc Diabet, 5: 2.
  • 25. Malone JI, Lowitt S, Korthals JK, Salem A, Miranda C (1996) The effect of hyperglycemia on nerve conduction and structure is age dependent. Diabetes, 45: 209–215.
  • 26. Matkovics B, Kotorman M, Varga IS, Hai DQ, Varga C (1998) Oxidative stress in experimental diabetes induced by streptozotocin. Acta Physiol Hung, 85: 29–38.
  • 27. Merzouk H, Madani S, Chabane D, Prost J, Bouchenak M, Belleville J (2000). Time-course of changes in serum glucose, insulin, lipids and tissue lipase activities in macrosomic offspring of rats with streptozotocin-induced diabetes. Clin Sci, 98: 21–30.
  • 28. National Institute of Health (1985) Guide for the Care and Use of Laboratory Anmals: DHEW Publication (NIH), revised, Office of Science and Health Reports, DRR/NIH, Bethesda, USA.
  • 29. Pitsavos C, Toutouzas K, Dernellis J, Skoumas J, Skoumbourdis E, Stefanadis C, Toutouzas P (1998) Aortic stiffness in young patients with heterozygous familial hypercholesterolemia. Am Heart J, 135: 604–608.
  • 30. Sechi L, Griffin C, Schambelan M (1994) The cardiac renin-angiotensin system in STZ-induced diabetes. Diabetes, 43: 1180–1184.
  • 31. Shirpoor A, Salami S, Khadem-Ansari M, Ilkhanizadeh B, Pakdel F, Khademvatani K (2009) Cardioprotective effect of vitamin E: rescues of diabetes-induced cardiac malfunction, oxidative stress, and apoptosis in rat. J Diabetes Complications, 5: 310–316.
  • 32. Strother R, Thomas T, Otsyula M, Sanders R, Watkins JB (2001) Characterization of oxidative stress in various tissues of diabetic and galactose-fed rats. Int J Exp Diabetes Res, 2: 211–216.
  • 33. Tiedge M, Lortz S, Drinkgern J, Lenzen S (1997). Relation between antioxidant enzyme gene-expression and antioxidative defense status of insulin-producing cells. Diabetes, 46: 1733–1742.
  • 34. Tsutsui H, Matsushima S, Kinugawa S, Ide T, Inoue N, Ohta Y, Yokota T, Hamaguchi S, Sunagawa K (2007) Angiotensin II type 1 receptor blocker attenuates myocardial remodeling and preserves diastolic function in diabetic heart. Hypertens Res, 30: 439–449.
  • 35. Uchigata Y, Yamamoto H, Kawamura A, Okamoto H (1982) Protection by superoxide dismutase, catalase and poly (ADP-ribose) synthetase inhibitors against alloxan-and streptozotocin-induced islet DNA strand breaks and against the inhibition of proinsulin synthesis. J Biol Chem, 257: 6084–6088.
  • 36. Weiss RB (1982) Streptozotocin: a review of it pharmacology, efficacy and toxicity. Cancer Treat Rep, 66: 427–438.
  • 37. Williams MA (1977) Quantitative methods in biology. In: Glauert AM ed. Practical methods in electron microscopy. North-Holland, Amsterdam, pp. 48–62.
  • 38. Xiag HD (2003) Study on prevalence rate of hypertension and chronic diabetes complication in patients with diabetes. Diabetes, 24: 819–821.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-42a1a3d3-ced3-4f0f-b951-8345fb8af6cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.