PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 51 | 2 |

Tytuł artykułu

Transcriptomic 'portraits' of canine mammary cancer cell lines with various phenotypes

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In light of the high incidence of mammary cancer in dogs and completion of the canine genome sequencing, the new possibilities of gene profiling by using DNA microarrays give hope to veterinary oncology. The cell lines isolated from mammary tumors are a valuable tool in developing and testing new pathway-specific cancer therapeutics. Differential cytometric analysis of 6 canine mammary cancer cell lines was performed. We divided cell lines into 3 groups based on their phenotype: 2 lines with high proliferative potential, 2 lines with high antiapoptotic potential, and 2 lines with high metastatic potential. DNA microarray analysis revealed common genes for cell lines of each group. We found that genes encoding the receptors for growth hormone and ghrelin are related to high proliferation rate, while ABR (active BCR-related) and TMD1 (TM2 domain containing 1) genes are related to a high antiapoptotic potential of the cancer cells. Metastatic properties of mammary cancer cells seem to be associated with elevated expression of PGP (P glycoprotein), SEMA3B (semaphorin 3B), and STIM1 (stromal interaction molecule 1).

Wydawca

-

Rocznik

Tom

51

Numer

2

Opis fizyczny

p.169-183,fig.,ref.

Twórcy

autor
  • Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences [SGGW], Nowoursynowska 159, 02-776 Warsaw, Poland
  • Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences [SGGW], Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Cell Biology Department, National Medicines Institute, Warsaw, Poland
autor
  • Department of Internal Medicine, University of Giessen Lung Center, Justus Liebig University, Giessen, Germany
autor
  • Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences [SGGW], Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Department and Clinic of Obstetrics, Ruminant Diseases and Animal Health Care, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
autor
  • Department of Biochemistry, Pharmacology and Toxicology, Wrocław University of Environmental and Life Science, Wrocław, Poland
  • Department Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
autor
  • Department of Internal Medicine, University of Giessen Lung Center, Justus Liebig University, Giessen, Germany
autor
  • Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences [SGGW], Nowoursynowska 159, 02-776 Warsaw, Poland

Bibliografia

  • Allison DB, 2002. Statistical methods for microarray research for drug target identification. Proc Soc Stat Sect 37-44.
  • Brinkhof B, Spee B, Rothuizen J, Penning LC, 2006. Development and evaluation of canine reference genes for accurate quantification of gene expression. Anal Biochem 356: 36-43.
  • Chopin LK, Jeffery PL, Yeh A, McNamara JF, Wight R, Herington AC, 2005. Ghrelin and hormone-dependent cancer. Proc Aust Physiol Pharmacol Soc.
  • Christensen CN, Ambartsumian G, Gilestro B, et al. 2005. Proteolytic processing converts the repelling signal Sema3E into an inducer of invasive growth and lung metastasis. Cancer Res 65: 6167 - 6177.
  • D'Amours D, Amon A, 2004. At the interface between signaling and executing anaphase—Cdc14 and the FEAR network. Genes Dev 18: 2581-2595.
  • Darzynkiewicz Z, Robinson JP, Crissman HA, 1994. Methods in cell biology. Flow cytometry, 2nd ed. Part A. San Diego, California: Academic Press. 41: 211-217, 409-410.
  • Donnenberg V, Donnenberg A, 2005. Multiple drug resistance in cancer revisited: the cancer stem cells hypothesis. J Clin Pathol 45: 872-877. Eisen MB, Spellman PT, Brown PO, Botstein D, 1998. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: 14863-14868.
  • Etschmann B, Wilcken B, Stoevesand K, von der Schulenburg A, Sterner-Kock A, 2006. Selection of reference genes for quantitative real-time PCR analysis in canine mammary tumors using the GeNorm algorithm. Vet Pathol 43: 934-942.
  • Gebre-Medhin M, Kindlom LG, Wennbo H, Tomell J, Meis-Kindblom JM, 2001. Growth hormone receptor is expressed in human breast cancer. Am J Pathol 158: 1217-1222.
  • Hellmen E, 1992. Characterization of four in vitro established canine mammary carcinoma and one atypical benign mixed tumor cell lines. In Vitro Cell Dev Biol 28A: 309-319.
  • Hellmen E, Moller M, Blankenstein MA, Andersson L, Westermark B, 2000. Expression of different phenotypes in cell lines from canine mammary spindle-cell tumours and osteosarcomas indicating a pluripotent mammary stem cell origin. Breast Cancer Res Treat 61: 197-210.
  • Jeffrey PL, Murray RE, Yeh AH, McNamara JF, Duncan RP, Francis GD, et al. 2005. Expression and function of the ghrelin axis, including a novel preproghrelin isoform, in human breast cancer tissues and cell lines. Endocr Relat Cancer 12: 839-850.
  • Keeshan K, Mills KI, Cotter TG, McKenna SL, 2001. Elevated Bcr-Abl expression levels are sufficient for a haematopoietic cell line to acquire a drug-resistant phenotype. Leukemia 15: 1823-1833.
  • Kendziorski CM, Zhang Y, Lan H, Attie AD, 2003. The efficiency of pooling mRNA in microarray experiments, Biostatistics 4,3: 465-477.
  • Kendziorski CM, Irizarry RA, Chen KS, Haag JD, Gould MN, 2005. On the utility of pooling biological samples in microarray experiments. Proc Natl Acad Sci USA 102: 124252-124257.
  • Król M, Pawłowski KM, Otrębska D, Motyl T, 2009a. DNA microarrays - future in oncology. JCPCR 2: 091-096.
  • Król M, Pawłowski KM, Motyl T, 2009b. Mikromacierze DNA w onkologii weterynaryjnej [DNA microarrays in veterinary oncology]. Medycyna Weterynaryjna 65: 376-380.
  • Król M, Pawłowski KM, Skierski J, Rao NAS, Hellmen E, Mol JA, Motyl T, 2009c. Transcriptomic profile of two canine cancer cell lines with different proliferative and anti-apoptotic potential. J Physiol Pharmacol 60: 95-106.
  • Król M, Polańska J, Pawłowski KM, Turowski P, Skierski J, Majewska A, et al. 2010. Transcriptomic signature of cell lines isolated from canine mammary adenocarcinoma metastases to lungs. J Appl Genet 51: 37-50.
  • Lindblad-Toh K, Wade CM, Mikkelsen TS, et al. 2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438: 803-819.
  • Macoska JA, 2002. The progressing clinical utility of DNA microarrays. CA Cancer J Clin 52: 50-59.
  • Madej JA, Rotkiewicz T 2006. Patologia ogólna zwierząt (General animal pathology). Olsztyn: Uniwersytet Warmińskio-Mazurski.
  • Misdorp W, 2002. Tumors of the mammary gland. In: Tumors in domestic animals, 4th ed., Iowa State Press, Blackwell Publ. Comp. 589-602.
  • Misher H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, et al. 2005. The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33: 284-288.
  • Oshlack A, Emsile D, Corcoran LM, Smyth GK, 2007. Normalization of boutique two-color microarrays with a high proportion of differentially expressed probes. Genome Biol 8:R2.
  • Ougolkov AV, Billadeau DD, 2006. Targeting GSK-3: a promising approach for cancer therapy? Future Oncol 2: 91-100.
  • Pawłowski KM, Król M, Majewska A, Badowska- Kozakiewicz A, Mol JA, Malicka E, Motyl T, 2009. Comparison of cellular and tissue transcriptomic profiles in canine mammary tumor. J Physiol Pharmacol 60: 85-94.
  • Ramaswamy S, Ross KN, Lander ES, Golub TR, 2002. A molecular signature of metastasis in primary solid tumors. Nat Genet 33: 49-54.
  • Rao NAS, van Wolferen ME, Gracanin A, Bhatti SFM, Król M, Holstege FC, Mol JA, 2009. Gene expression profiles of progestin-induced canine mammary hyperplasia and spontaneous mammary tumors. J Physiol Pharmacol 60: 73-84.
  • Rao NAS, van Wolferen ME, van der Ham R, van Leenen D, Groot Koerkamp MJA, Holstege FCP, Mol JA, 2008. cDNA microarray profiles of canine mammary tumor cell lines reveal deregulated pathways pertaining to their phenotype. Anim Genet 39: 333-345.
  • Rolny C, Capparuccia L, Casazza A, et al. 2008. The tumor suppressor semaphorin 3B triggers a prometastatic program mediated by interleukin 8 and the tumor microenvironment. J Exp Med 205: 1155-1171.
  • Rutteman GR, Cornelisse CJ, Dijkshoorn NJ, Poortman J, Misdorp W, 1988. Flow cytometric analysis of DNA ploidy in canine mammary tumors, Cancer Res 48: 3411-3417.
  • Sobczak-Filipiak M., Malicka E., 2005. Estrogen receptors in canine mammary gland tumours. Pol J Vet Sci 5:1-5.
  • Spee B., Jonkers MDB, Arends B, Rutteman GR, Rothuizen J., Penning LC, 2006. Specific down-regulation of XIAP with RNA interference enhances the sensitivity of canine tumor cell-lines to TRAIL and doxorubicin. Mol Cancer 5:34.
  • Sterrenburg E, Turk R, Boer JM, van Ommen GB, den Dunnen JT, 2002. A common reference for cDNA microarray hybridizations. Nucleic Acids Res 30: 116.
  • Suyama E, Wadowa R, Kaur K, et al. 2006. Identification of metastasis-related genes in a mouse model using a library of randomized ribozymes. J Biol Chem 281: 18264.
  • Tusher VG, Tibshirani R, Chu G, 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116-5121.
  • Wagner K, Hemminki K, Grzybowska E, Klaes R, Burwinkel B, Bugert P, et al. 2006. Polymorphisms in genes involved in GH1 release and their association with breast cancer risk. Carcinogenesis 27: 1867-1875.
  • Veer LJ van't, Dai H, Vijver MJ van de, He YD, Hart AA, Peterse HL, et al. 2002. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530-536.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-429855b4-10f2-4235-8ab7-b16c382f3349
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.