PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | 48 | 2 |

Tytuł artykułu

Effect of Mg2plus on kinetics of oxidation of pyrimidines in duplex DNA by potassium permanganate

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Po tas sium per manga nate ox i da tion of py rim i dine bases is of ten used to probe sin­gle-stranded re gions in func tional DNA-pro tein com plexes. How ever, so far re ac tiv- ity of these bases in double-stranded DNA has not been studied quantitatively. We have investigated the kinetics of oxidation of pyrimidines in supercoiled pDS3 plasmid dsDNA by quan ti ta tive KMnO4 footprinting, in con nec tion with par al lel stud ies on the ef fect of Mg2+ on ki net ics of ox i da tion of in di vid ual thymines in the sin­gle-stranded re gion of the open tran scrip tion com plex of Escherichiacoli RNA poly­mer ase at a cog nate Pa pro moter con tained in this plasmid. Rate con stants of ox i da­tion for pyrimidines, kj, in selected regions of pDS3 DNA, including Pa promoter, were de ter mined un der sin gle-hit re ac tion con di tions in the ab sence and pres ence of 10 mM MgCl2. Their val ues ap peared to be se quence-dependent and were: (i) the larg­est for Ts in 5 TA3' and 5 TC3' steps, while 2-4 times smaller for 5'-adja cent ones in TT(A,G,C) and TTT(A) runs, (ii) for Cs in 5'TC3' steps 2-4 fold smaller than for ad ja- cent Ts, and (iii) in the pres ence of Mg2+ gen er ally larger by a se quence-dependent fac­tor: in 5' TC3' steps of about 2 and 4 for Ts and Cs, re spec tively, in 5 TA3' steps of TTA and TTTA se quences for 3 -ter mi nal Ts of about 3, while for their 5 -neigh bors of a dis­tinctly smaller value of about 2. Com par i son of kj data for cor re spond ing Ts lo cated be tween +1 and -10 re gions of Pa pro moter in dsDNA and in ssDNA form in the open transcription complex, reported elsewhere, demonstrates that reactivity of pyrimi­dines in dsDNA is by 2-3 or ders of mag ni tude smaller. The ef fect of Mg 2+ in dsDNA is in ter preted in terms of elec tro static bar rier to dif fu sion of MnO4- on DNA surface, which is low ered by dif fu sive bind ing of these ions to back bone phos phates, in volv ing also se quence-specific con tacts with bases in the mi nor and major grooves of B-DNA.

Wydawca

-

Rocznik

Tom

48

Numer

2

Opis fizyczny

p.511-523,fig.

Twórcy

autor
  • Polish Academy of Sciences, A.Pawinskiego 5a, 02-106 Warsaw, Poland

Bibliografia

  • 1.Hayatsu, H. & Ukita, T. (1967) The selective degradation of pyrimidines in nucleic acids by permanganate oxidation. Biochem. Biophys. Res. Commun. 29, 556-561.
  • 2.Iida, S. & Hayatsu, H. (1971) The permanganate oxidation of deoxyribonucleic acid. Biochim. Biophys. Acta 240, 370-375.
  • 3.McCarthy, J.G., Williams, L.D. & Rich, A. (1990) Chemical reactivity of potassium permanganate and diethyl pyrocarbonate with B DNA: Specific reactivity with short A-tracts. Biochemistry 29, 6071-6081.
  • 4.Jeppsen, C. & Nielsen, P.E. (1988) Detection of intercalation-induced changes in DNA structure by reaction with diethyl pyrocarbonate and potassium permanganate. FEBS Lett. 231, 172-176.
  • 5.Sasse-Dwight, S. & Gralla, J.D. (1991) Footprinting of protein-DNA complexes in vivo. Methods Enzymol. 208, 146-168.
  • 6.Nielsen, P.E., Egholm, M., Berg, R.H. & Buchardt, O. (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497-1500.
  • 7.Nielsen, P.E., Egholm, M. & Buchardt, O. (1994) Evidence for (PNA)2/DNA triplex structure upon binding of PNA to dsDNA by strand displacement. J. Mol. Recognit. 7, 165- 170.
  • 8.Sasse-Dwight, S. & Gralla, J.D. (1989) KMnO4 as a probe for lac promoter DNA melting and mechanism in vivo. J. Biol. Chem. 264, 8074-8081.
  • 9.Lozinski, T. & Wierzchowski, K.L. (2001) Mg2+ ions do not induce expansion of the melted DNA region in the open complex formed by Escherichia coli RNA polymerase at a cognate synthetic Pa promoter. A quantitative KMnO4 footprinting study. Acta Biochim. Polon. 48, 495-510.
  • 10.Lozinski, T., Markiewicz, W.T., Wyrzykiewicz, T.K. & Wierzchowski, K.L. (1989) Effect of the sequence-dependent structure of the 17 bp AT spacer on the strength of consensus-like E. coli promoters in vivo. Nucleic Acids Res. 17, 3855-3863.
  • 11.Lozinski, T., Adrych-Rozek, K., Markiewicz, W.T. & Wierzchowski, K.L. (1991) Effect of DNA bending in various regions of a consensus-like Escherichia coli promoter on its strength in vivo and structure of the open complex in vitro. Nucleic Acids Res. 19, 2947- 2953.
  • 12.Ide, H., Kow, Y.W. & Wallace, S.S. (1985) Thymine glycols and urea residues in M13 DNA constitute replicative blocks in vitro. Nucleic Acids Res. 13, 8035-8052.
  • 13.Tsodikov, O.V., Craig, M.L., Saecker, R.M. & Record, Jr., M.T. (1998) Quantitative analysis of multiple-hit footprinting studies to characterize DNA conformation changes in protein- DNA complexes: Application to DNA opening by E70 RNA polymerase. J. Mol. Biol. 283, 757-769.
  • 14.Mitas, M.Yu.A., Dill, J., Kamp, T.J., Chambers, E.J. & Haworth, I.S. (1995) Hairpin properties of single stranded DNA containing a GC-rich triplet repeat: (CTG)15. Nucleic Acids Res. 23, 1050-1059.
  • 15.Boutonnet, N., Hui, X. & Zakrzewska, K. (1993) Looking into the grooves of DNA. Biopolymers 33, 479-490.
  • 16.Gorin, A.A., Zhurkin, V.B. & Olson, W. (1995) B-DNA twisting correlates with base-pair morphology. J. Mol. Biol. 247, 34-48.
  • 17.Zakrzewska, K. (1992) Static and dynamic properties of AT sequences. J. Biomol. Struct. Dynam. 9, 681-693.
  • 18.Breslauer, K.J., Frank, R., Bloecker, H. & Marky, L.A. (1986) Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. U.S.A. 83, 3746-3750.
  • 19.Leroy, J.L., Charretier, E., Kochoyan, M. & Gueron, M. (1988) Evidence from base-pair kinetics for two types of adenine tract structures in solution: Their relation to DNA structure. Biochemistry 27, 8894-8898.
  • 20.Patel, D.J. & Kozlowski, S.A. (1985) Conformation, dynamics, and structural transitions of the TATA box region of self-complementary d[(C-G)n- T-A-T-A-(C-G)n] duplexes in solution. Biochemistry 24, 926-935.
  • 21.Patel, D.J. & Kozlowski, S.A. (1985) Conformation and dynamics of the Pribnow box region of the self-complementary d(C-G-A-T-T- A-T-A-A-T-C-G) duplex in solution. Biochemistry 24, 936-944.
  • 22.Moe, J.G., Folta-Stogniew, E. & Russu, I.M. (1995) Energetics of base pair opening in a DNA dodecamer containing an A3T3 tract. Nucleic Acids Res. 23, 1984-1989.
  • 23.Lu, P., Cheung, S. & Arndt, K. (1983) Possible molecular determinants in the DNA structure of regulatory sequences. J. Biomol. Struct. Dyn. 1, 509-521.
  • 24.Ramstein, J. & Lavery, R. (1988) Energetic coupling between DNA bending and base pair opening. Proc. Natl. Acad. Sci. U.S.A. 85, 7231-7235.
  • 25.Misra, V.K. & Draper, D.E. (1999) The interpretation of Mg2+ binding isotherms for nucleic acids using Poisson-Boltzmann theory. J. Mol. Biol. 294, 1135-1147.
  • 26.Paulsen, M.D., Andersen, C.F. & Record, Jr., M.T. (1988) Counterion exchange reactions on DNA: Monte Carlo and Poisson-Boltzmann analysis. Biopolymers 27, 1249-1265.
  • 27.Manning, G.S. (1978) The molecular theory of polyelectrolyte solutions with applications to electrostatic properties of polynucleotides. Q. Rev. Biophys. 11, 179-246.
  • 28.Duguid, J., Bloomfield, V.A., Benevides, J. & Thomas, Jr., G.J. (1993) Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd and Cd. Biophysical J. 65, 1916-1928.
  • 29.Duguid, J., Bloomfield, V.A., Benevides, J. & Thomas, Jr., G.J. (1995) Raman spectroscopy of DNA-metal complexes: II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+ and Cd2+. Biophysical J. 69, 2623-2641.
  • 30.Li, A.Z., Huang, H., Re, X., Qi, L.J. & Marx, K.A. (1998) A gel electrophoretic study of the competitive effects of monovalent counterion on the extent of divalent counterions binding to DNA. Biophys. J. 74, 964-973.
  • 31.Buckin, V.A., Kankiya, B.I., Rentzeperis, D. & Marky, L.A. (1994) Mg2+ recognizes the sequence of DNA through its hydration shell. J. Am. Chem. Soc. 116, 9423-9429.
  • 32.MacKerell, A.D. (1997) Influence of magnesium ions on duplex DNA structural, dynamic, and solvation properties. J. Phys. Chem. B, 101, 646-650.
  • 33.Brukner, I., Susic, S., Dlakic, M., Savic, A. & Pongor, S. (1994) Physiological concentration of magnesium ions induces a strong macroscopic curvature in GGGCCC-containing DNA. J. Mol. Biol. 236, 26-32.
  • 34.McFail-Isom, L., Shui, X. & Williams, L.D. (1998) Divalent cations stabilize unstacked conformations of DNA and RNA by interacting with base systems. Biochemistry 37, 17105-17111.
  • 35.Sines, C.C., McFail-Isom, L., Howerton, S.B., VanDerveer, D. & Williams, L.D. (2000) Cations mediate B-DNA conformational heterogenity. J. Am. Chem. Soc. 122, 11048-11056.
  • 36.Minasov, G., Tereshko, V. & Egli, M. (1999) Atomic-resolution structures of B-DNA reveal specific influences of divalent metal ions on conformation and packing. J. Mol. Biol. 291, 83-99.
  • 37.Chiu, T.K. & Dickerson, R.E. (2000) 1 A crystal structures of B-DNA reveal sequence-specific binding and groove-specific bending of DNA by magnesium and calcium. J. Mol. Biol. 301, 915-945.
  • 38.Halle, B. & Denisov, V.P. (1998) Water and monovalent ions in the minor groove of B-DNA oligonucleotides as seen by NMR. Biopolymers, Nucl. Acid Sci. 48, 210-233.
  • 39.Denisov, V.P. & Halle, B. (2000) Sequence- specific binding of counterions to B-DNA. Proc. Natl. Acad. Sci. U.S.A. 97, 629-633.
  • 40.Hammelberg, D., McFail-Isom, L., Williams, L.D. & Wilson, W.D. (2000) Flexible structure of DNA: Ion dependence of minor-groove structure and dynamics. J. Am. Chem. Soc. 122, 10513-10520.
  • 41.Stellwagen, N.C., Magnusdottir, S., Gelfi, C. & Righetti, P.G. (2001) Preferential counterion binding to A-T tract DNA oligomers. J. Mol. Biol. 305, 1025-1033.
  • 42.Rybenkov, V.V., Vologodskii, A.V. & Cozzarelli, N.R. (1997) The effect of ionic conditions on DNA helical repeat, effective diameter and free energy of supercoiling. Nucleic Acids Res. 25, 1412-1418.
  • 43.Rybenkov, V.V., Vologodskii, A.V. & Cozzarelli, N.R. (1997) The effect of ionic conditions on the conformations of supercoiled DNA. I. Sedimentation analysis. J. Mol. Biol. 267, 299-311.
  • 44.Kao, J.Y., Goljer, I., Phan, T.A. & Bolton, P.H. (1993) Characterization of the effects of a thymine glycol residue on the structure, dynamics, and stability of duplex DNA by NMR. J. Biol. Chem. 268, 17787-17793.
  • 45.Kung, H.C. & Bolton, P.H. (1997) Structure of duplex DNA containing a thymine glycol residue in solution. J. Biol. Chem. 272, 9227- 9236.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-41d09071-1f43-4faa-b362-9ccc8d789654
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.