PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 57 | 4 |

Tytuł artykułu

Isolation and characterization of a Cr[VI] reducing Bacillus firmus strain from industrial effluents

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A chromium resistant bacterial strain KUCr1 exhibiting potential Cr(VI) reducing ability under in vitro aerobic condition is reported. The bacterial strain showed varied degree of resistance to different heavy metals. The MIC of chromium to this strain was found to be 950 mM under aerobic culture condition in complex medium. The factors affecting Cr(VI) reduction by this strain under culture condition were evaluated. Maximal Cr(VI) reduction was observed at the pH 8 to 10 and at a temperature of 35°C. Higher concentration of Cr(VI) slowed down the reduction, eventually all the metal could be reduced with longer incubation time. Different toxic metals showed differential effect on reduction. Cadmium and zinc were found to inhibit reduction. Cr(VI) reduction and bioremediation were found to be related to the growth supportive condition in terms of carbon, phosphorous and nitrogen supply in wastewater fed with tannery effluent indicating cell mass dependency of Cr(VI) reduction. Through biochemical characterization and 16S rDNA sequence analysis, the strain KUCr1, as the name given to it, was identified as a strain of Bacillus firmus.

Wydawca

-

Rocznik

Tom

57

Numer

4

Opis fizyczny

p.327-332,fig.,ref.

Twórcy

autor
  • University of Kalyani, Kalyani 741235, India
autor

Bibliografia

  • Abdel-Sabour M.F. 2007. Chromium in receving environment in Egypt (An Overview). E.J. Environ. Agri. Food Chem. 6: 2178-2198.
  • Altschul S.F., W. Gish, W. Mille, E.W. Myer and D.J. Lipman. 1990. Basic local alignment search tool. J. Mot. Biol. 219: 403-410.
  • Bailar J.C. 1997. Chromium. In: Parker S.P. (ed). McGraw-Hill Encyclopedia of Science and Technology, VIIIth ed. Vol. 3. McGraw-Hill, New York.
  • Bopp L.H. and H.L. Ehrlich. 1988. Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch. Microbiol. 150: 426-431.
  • Camargo F.A.O., F.M. Bento, B.C. Okeke and W.T. Frankenberger. 2003. Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J. Environ. Qual. 32:1228-1233.
  • Campos J., M. Martinez-Pacheco and C. Cervantes. 1995. Hexavalent-chromate reduction by a chromate resistant Bacillus sp. Antonie Van Leeuwenhoek 68: 203-208.
  • Cheung K.H. and J.D. Gu. 2005. Chromate reduction by Bacillus megaterium TKW3 isolated from marine sediments. W.J. Microbiol. Biotechnol. 21: 213-219.
  • Cheung K.H. and J.D. Gu. 2007. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. Int. Biodet. Biodegrad. 59: 8-15.
  • Cheung K.H., H.Y. Lai and J.D. Gu. 2006. Membrane-associated hexavalent chromium reductase of Bacillus megaterium TKW3 with induced expression. J. Microbiol. Biotechnol. 16: 855-862.
  • Desjardin V., R. Bayard, P. Lejeune and R. Gourdon. 2003. Utilisation of supernatants of pure cultures of Streptomyces thermocarboxydus NH50 to reduce chromium toxicity and mobility in contaminated soils. Water Air Soil Pollut. 3: 153-160.
  • Eccles H. 1995. Removal heavy metals from effluents streams - why select a biological process? Int. Biodet. Biodegrad. 35: 5-16.
  • Faisal M. and S. Hasnain. 2004. Microbial conversion of Cr (VI) in to Cr (III) in industrial effluent. African J. Biotechnol. 3: 610-617.
  • Francis C.A., A.Y. Obraztsova and B.M. Tebo. 2000. Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1. Appl. Environ. Microbiol. 66: 543-548.
  • Fredrickson J.K., H.M. Kostandarithes, S.W. Li, A.E. Plymale and M.J. Daly. 2000. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl. Environ. Microbiol. 66: 2006-2011.
  • Garbisu C, I. Alkorta, M.J. Llama and J.L. Serra. 1998. Aerobic chromate reduction by Bacillus subtilis. Biodegraation 9: 133-141.
  • Ishibashi Y., C. Cervantes and S. Silver. 1990. Chromium reduction in Pseudomonas putida. Appl. Environ. Microbiol. 56: 2268-2270.
  • Losi M.E., C. Amrhein and W.T. Frankenberger. 1994. Environmental biochemistry of chromium. Rev. Environ. Contam. Toxicol. 36: 91-121.
  • Maidack B.L., G.J. Olsen, N. Larson, R. Overbeek, M.J. McCaughey and CR. Woese. 1997. The RDP (Ribosomal Database Project). Nucleic Acids Res. 205: 109-111.
  • McLean J. and T.J. Beveridge. 2001. Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl. Environ. Microbiol. 67: 1076-1084.
  • McLean J.S., T.J. Beveridge and D. Phipps. 2000. Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate-contaminated site. Environ. Microbiol. 2: 611-619.
  • Michel C, M. Brugna, C. Aubert, A. Bernadac and M. Bruschi. Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Appl. Microbiol. Biotechnol. 55: 95-100.
  • Nurbap Nourbakhsh M., S. Kilicarslan, S. Ilhan and H. Ozdag. 2002. Biosorption of Cr⁶⁺ Pb²⁺ and Cu²⁺ ions in industrial waste water on Bacillus sp. Chem. Eng. J. 85: 351-355.
  • Pal A., S. Dutta and A.K. Paul. 2005. Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr. Microbiol. 51: 327-330.
  • Palmer CD. and P.R. Wittbrodt. 1991. Processes affecting the remediation of chromium-contaminated sites. Environ. Health Pers. 92: 25-40.
  • Salchizadeh H. and S.A. Shojaosadati. 2003. Removal of metal ions from aqueous solution by polysaccharide produced form Bacillus firmus. Water Res. 37: 4231-4235.
  • Sawyer C.N., P.L. McCarty and G.F. Parkin. 1994. Chemistry for Environmental Engineering, IVth ed. McGraw-Hill, New York.
  • Shakoori A.R., M. Makhdoom and R.U. Haq. 2000. Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Appl. Microbiol. Biotechnol. 53: 348-351.
  • Smith W.A., W.A. Apel, J.N. Petersen and B.M. Peyton. 2002. Effect of carbon and energy source on bacterial chromate reduction. Bioremed. J. 6: 205-215.
  • Sneath P. 1986. Endospore-forming Gram-positive rods and occi. pp. 1104-1138. In: Sneath P.H.A., N.S. Mair, M.E. Sharpe and J.G. Holt (eds). Bergeys Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore, USA.
  • United States Environmental Protection Agency. 1998. Toxicological review of hexavalent chromium (CAS No. 18540-29-9), US EPA, Washington D.C.
  • Urone P.F. 1955. Stability of colorimetric reagent for chromium. S-diphenylcarbazides in various solvents. Anal. Chem. 27: 1354-1355.
  • Wang Y.T. and C. Xiao. 1995. Factors affecting hexavalent chromium reduction in pure cultures of bacteria. Water Res. 29: 2467-2474.
  • Wang P., T. Mori, K. Toda and H. Ohtake. 1990. Membrane-associated chromate reductase activity from Enterobacter cloacae. J. Bacteriol. 172: 1670-1672.
  • Xu X.R., H.B. Li and J.D. Gu. 2004. Reduction of hexavalent chromium by ascorbic acid in aqueous solutions. Chemosphere 57: 609-613.
  • Xu X.R., H.B. Li, J.D. Gu and X.Y. Li. 2005. Kinetics of the reduction of chromium (VI) by vitamin C. Environ. Toxicol. Chem. 24: 1310-1314.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-400914b6-f4a5-4c65-8a14-5993233e4c5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.