PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 09 | 4A |

Tytuł artykułu

Genetic diversity analysis in Valencia peanut [Arachis hypogaea L.] using microsatellite markers

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Cultivated peanut or groundnut (Arachis hypogaea L) is an important source of oil and protein. Considerable variation has been recorded for morphological, physiological and agronomic traits, whereas few molecular variations have been recorded for this crop. The identification and understanding of molecular genetic diversity in cultivated peanut types will help in effective genetic conservation along with efficient breeding programs in this crop. The New Mexico breeding program has embarked upon a program of improvement of Valencia peanut (belonging to the sub species fastigiata), because efforts to improve the yield potential are lacking due to lack of identified divergent exotic types. For the first time, this study has shown molecular diversity using microsatellite markers in the cultivated Valencia peanut (sub spp. fastigiata) from around the globe. In this investigation, 48 cultivated Valencia peanut genotypes have been selected and analyzed using 18 fluorescently labeled SSR (f-SSR) primer pairs. These primer pairs amplified 120 polymorphic loci among the genotypes screened and amplified from 3 to 19 alleles with an average of 6.9 allele per primer pair. The f-SSR marker data was further analyzed using cluster algorithms and principal component analysis. The results indicated that (1) considerable genetic variations were discovered among the analyzed genotypes; (2) The f-SSR based clustering could identify the putative pedigree types of the present Valencia types of diverse origins, and (3) The f-SSR in general is sufficient to obtain estimates of genetic divergence for the material in study. The results are being utilized in our breeding program for parental selection and linkage map construction.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

09

Numer

4A

Opis fizyczny

p.685-697,fig.,ref.

Twórcy

autor
  • New Mexico State University, las Cruces, NM 88003, USA
autor
autor
autor
autor
autor

Bibliografia

  • 1. Krapovickas, A. and Gregory, W.C. Taxonomy of the genus Arachis (Leguminosae) Bonplandia 8 (1994) 1-186.
  • 2. Upadhyaya, H. D., Bramel, P.J., Ortiz R. and Singh S. Geographical patterns of diversity for morphological and agronomic traits in the groundnut germplasm collection. Euphytica 128 (2002) 191-204.
  • 3. Mozingo, R.W., Coffelt, T.A. and Wynne J.C. Genetic improvement in large seeded Virginia-type peanut cultivars since 1944. Crop Sci. 27 (1987) 228231.
  • 4. Knauft, D.A. and Gorbet, D.W. Genetic diversity among peanut cultivars. Crop Sci. 29 (1989) 1417-1422.
  • 5. Bligh, H.F.J. Detection of adulteration of Basmati rice with non-premium long grain rice. Int. J. Food Sci. Technol. 35 (2000) 257-265.
  • 6. Kochert, D.A., Halward, T., Branch W.D. and Simpson C.E. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor. Appl. Genet. 81 (1991) 565-570.
  • 7. Paik-Ro, O.G., Smith, R.L. and. Knauft, D.A. Restriction fragment length polymorphisms evaluation of six peanut species within the Arachis section. Theor. Appl. Genet. 84 (1992) 201-208.
  • 8. Halward, T.M., Stalker, T., LaRue, E. and Kochert. G. Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome 34 (1991) 1013-1020.
  • 9. Halward, T., Stalker, T., LaRue, E. and Kochert. G. Development of an RFLP linkage map in diploid peanut species. Theor. Appl. Genet. 87 (1993) 379-384.
  • 10. Halward, T.H., Stalker, H.T. and Kochert. G. RFLP map of peanut. in: DNA-Based Markers in Plants (Phillips, R.L. and Vasail, I.K. Eds.), Kluwer Academic Publishers, London, UK, 1994. 246-260.
  • 11. Halward, T., Stalker, T., LaRue, E. and Kochert, G. Use of single primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Mol. Biol. 18 (1992) 315-325.
  • 12. Burow, M.D., Starr, J.L., Simpson. C. E. and Paterson A.H. Identification of RAPD markers in peanut (Arachis hypogaea) associated with root-knot nematode resistance derived from A. cardenasii. Mol. Breed. 2 (1996) 307319.
  • 13. Subramanian, V., Gurtu, S., Nageshwara Rao, R.C. and Nigam, S.N. Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43 (2000) 656-660.
  • 14. He, G. and Prakash, C.S. Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L ). Euphytica 97 (1997) 143-149.
  • 15. Herselman, L. Genetic variation among Southern African cultivated peanut (Arachis hypogaea L.) genotypes as revealed by AFLP analysis. Euphytica 133 (2003) 319-327.
  • 16. He, G., Meng, R., Newman, M., Gao, G., Pittman, R.N. and Prakash, C.S. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L). BMC Plant Biology (2003) April 23. http://www.biomedcentral.com/1471 - 2229/3/3.
  • 17. Ferguson, M.E., Burow, M., Schulze, S.R., Bramel, P.J., Paterson, A., Kresovich, S. and Mitchell, S. Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor. Appl. Genet. (2004), in press.
  • 18. Schuler, D., Boguski, M.S. and Stewart, E.A. A gene map of the human genome. Science 273 (1996) 540-546.
  • 19. Knapik, E.W., Goodman, A. and Ekker, M.A. Microsatellite genetic linkage map for Zebra fish (Danio rerio). Nature Genet. 18 (1998) 338-343.
  • 20. Jarne, P. and Lagoda, P.J.L. Microsatellite, from molecules to populations and back. Trends Ecol. Evol. 11 (1996) 424-429.
  • 21. Gupta, P.K. and Varshney, R.K. The development and use of microsatellite markers for genetic analysis and plant breeding in emphasis on bread wheat. Euphytica 113 (2000) 163-183.
  • 22. Kochert, G., Stalker, H.T., Ginenes, M., Galgaro L. and Moore, K. RFLP and cytogenetic evidence for the progenitor species of allotetraploid cultivated peanut. Arachis hypogaea (leguminosae). Am. J. Bot. 83 (1996) 1282-1291.
  • 23. Hopkins, M.S., Casa, A.M., Wang, T., Mitchell, S.E., Dean, R.E., Kochert, G.D. and Kresovich, S. Discovery and characterization of polymorphic Simple Sequence Repeats (SSRs) in cultivated peanut (Arachis hypogaea L). Crop Sci. 39 (1999) 1243-1247.
  • 24. Zhang, J. and Stewart, J.M. Economical and rapid method for extracting cotton genomic DNA. J. Cotton Sci. 4 (2000) 193-201.
  • 25. Sneath, P.H.A. and Sokal, R.R. Numerical Taxonomy. The Principle and Practice of Numerical Classification, Freeman W. H. Co. San Francisco 1973.
  • 26. Rohlf, J.F. NTSYS-pc: Numerical taxonomy and multivariate analysis system. Exeter Software, Setauket, NY, 2000.
  • 27. Asante, I.K. and Offei, S.K. RAPD- based genetic diversity of fifty cassava (Manihot esculanta Crantz) genotypes. Euphytica 131 (2003) 113-119.
  • 28. Law, I.J. Cloning and expression of cDNA for galactose- binding lectins from peanut nodules. Plant Sci. 115 (1996) 71-79.
  • 29. Jaccard, P. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 44 (1908) 223-270.
  • 30. Isleib, T.G., Holbrook, C.C. and Gorbet, D.W. Use of Arachis spp. plant introduction in peanut cultivar development. Peanut Sci. 28 (2001) 96-113.
  • 31. Georgiev, S. New peanut varieties Rossita. Rastenievadni nauki 35 (1998) 367-370.
  • 32. Branch, W.D. and Hammons, R.O. Registration of 'Georgia Red' peanut. Crop Sci. 27 (1987) 1090.
  • 33. Branch, W.D. Registration of 'Georgia Valencia' peanut. Crop Sci. 41 (2002) 2002-2003.
  • 34. Liu, F., Sun, G.L., Salomon, B. and Bother von, R. Distribution of allozyme and genetic diversity in the American barley core collection. Theor. Appl. Genet. 102 (2001) 606-615.
  • 35. Isleib, T.G. and Wynne, J.C. Heterosis in test crosses of 27 exotic peanut cultivars. Crop Sci. 23 (1983) 832-841.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-3f9f456d-3817-4d6c-990c-f8c7a9040ace
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.