PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 44 | 3 |

Tytuł artykułu

Fluorescence resonance energy transfer in studies of inter-chromophoric distances in biomolecules

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Fluorescence resonance energy transfer (FRET) is a technique widely used in studies of interchromophoric distances in biomolecules such as peptides, pro­teins and nucleic acids. FRET is especially useful in determination of confor­mational changes caused by a solvent, presence of denaturing agents, diffusion and other external factors. Precision of interchromophoric distances obtained using the FRET technique is comparable with that of low-resolution X-ray diffraction and NMR data. Comparison of FRET results with the crystal struc­ture for several proteins is reviewed. Moreover, the effect of the orientation factor K2 value on FRET results and determinants of k2 are discussed.

Wydawca

-

Rocznik

Tom

44

Numer

3

Opis fizyczny

p.477-489

Twórcy

  • University of Gdansk, J.Sobieskiego 18, 80-952 Gdansk, Poland
autor
autor

Bibliografia

  • 1. Förster. T. (1948) Intramolecular energy mi­gration and fluorescence. Ann. Phys. (Leipzig) 2. 55-75, English translation by Knox, R.S., University of Rochester, 1974.
  • 2. Förster, T. (1959) Transfer mechanism of elec­tronic excitation. Discus. Faraday Soc. 27, 7-17.
  • 3. Förster. T. (1960) Transfer mechanism of elec­tronic excitation energy. Radiat. Res. Sup pi. 2. 326-339.
  • 4. Förster, T. (1965) Delocalized excitation and excitation transfer; in Modern Quantum Chemistry (Sinanoglu, O., cd.) vol. 3, pp. 93 137, Academic Press, New York.
  • 5. Turro, N.J. (1977) Energy transfer processes. Pure Appl. Chem. 49. 405-429.
  • 6. Speiser, S. (1996) Photophysics and mecha­nism of intramolecular electronic energy transfer in bichromophoric system: Solution and supersonic jet studies. Chem. Rev. 96, 1953-1976.
  • 7. Clegg, R.M. (1996) Fluorescence resonance energy transfer; in Fluorescence Imaging Spectroscopy and Microscopy (Wang, X.F. & Herman, B.. eds.) Chemical Analysis Series, vol. 137, John Wiley & Sons Inc., New York.
  • 8. Dexter, D.L. (1953) A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836-850.
  • 9. Jovin, T.M. & Jovin-Arndt, D. (1989) Lumi­nescence digital imaging microscopy. Annu. Rev. Biophys. Chem. 18, 271-308.
  • 10. Young, R.M., Arnctte, J.K., Roess, D.A. & Barisas, B.G. (1994) Quantitation of fluores­cence energy transfer between cell surface proteins via fluorescence donor photobleach- ing kinetics. Biophys. J. 67, 881-888.
  • 11. Mekler, M.V. (1994) A photochemical tech­nique to enhance sensitivity of detection of fluorescence resonance energy transfer. Pho- tochem. Photobiol. 59, 615-620.
  • 12. Schiller, P. (1985) Application of fluorescence techniques in studies of peptide conformation and interaction. Peptides 7, 116-164.
  • 13. Fairclough, R.H. & Cantor, C.R. (1978) The use of singlet-singlet energy transfer to study macromolecular assemblies. Methods Enzy- mol. 48, 347-379.
  • 14. Mugnier, J., Pouget, J., Bourson, J. & Valeur, B. (1985) Efficiency of intramolecular elec­tronic energy transfer in coumarin bichromo­phoric molecules. J. Luminescence 33, 273- -300.
  • 15. Clegg, R.M. (1992) Fluorescence resonance energy transfer and nucleic acid. Methods Enzymol. 211, 353-388.
  • 16. Wu, P. & Brand, L. (1994) Resonance energy transfer: Methods and application. Anal. Bio- chem. 218, 1-13.
  • 17. Sel vin, P.R. (1995) Fluorescence resonance energy transfer. Methods Enzymol. 246, 300-334.
  • 18. Wiczk, W. & Lankiewicz, L. (1996) Average distance and distance distribution estimation by steady-state energy transfer measure­ment. Wiad. Chemiczne 50. 99-124, (in Pol­ish).
  • 19. Wiczk, W. (1996) Application of Radiationless Energy Transfer in Studies of Conformation of Biologically Active Compounds. Habilita­tion dissertation, Wyd. Uniwersytetu Cdańskiego, Gdańsk, (in Polish).
  • 20. Cheung, U.C. (1991) Resonance energy trans­fer; in Topics in Fluorescence Spectroscopy (Lakowicz, J.R., ed.) vol. 2, Principles, pp. 127-171, Plenum Press. New York.
  • 21. Schiller, P. (1975) Intramolecular distances: Energy transfer; in Biochemical Fluorescence: Concepts (Chen, R.F. & Edelhoch, H., eds.) vol. 1, pp. 258-303, Marcel Dekker, New York.
  • 22. Stryer, L. & Haugland, R.P. (1967) Energy transfer: A spectroscopic ruler. Proc. Natl. Acad. Sci. U.S.A. 58, 719-726.
  • 23. Stryer, L. (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819-846.
  • 24. Steinberg, I.Z. (1971) Long-range nonradia- tive transfer of electronic energy in protein and peptides. Annu. Rev. Biochem. 40, 83- -114.
  • 25. Mathis, G. (1993) Rare earth cryptants and homogeneous fluoroimmunoassays with hu­man sera. Clin. Chem. 39, 1953-1959.
  • 26. Dos Remedios, C.G. & Moens, P.D. (1995) Fluorescence resonance energy transfer spec­troscopy is a reliable "ruler" for measuring structural changes in proteins. J. Struc. Biol. 115, 175-185.
  • 27. Dos Remedios, C.G., Miki, M. & Barden, J.A. (1987) Fluorescence resonance energy trans­fer measurements of distance in actin and myosin: A critical evaluation. J. Muscle Res. Cell Motil. 8. 97-118.
  • 28. Amir, D. & Haas, E. (1987) Estimation of intramolecular distance distribution in bo­vine pancreatic trypsin inhibitor by site-spe­cific labeling and nonradiative excitation en­ergy-transfer measurements. Biochemistry 26, 2162-2175.
  • 29. Haas, E. (1986) Folding and dynamics of pro­teins studied by non-radiative energy transfer measurements; in Photophysical and Photo­chemical Tools in Polymer Science CWinnik, M.A., ed.) pp. 325-350, D. Reidel Publishing Comp., Dordrecht.
  • 30. Harton, H.R. & Koshland, D.E. (1967) Envi­ronmentally sensitive groups attached to pro­teins. Methods Enzymol. 11, 857 870.
  • 31. Forster, Y. & Hass, E. (1993) Preparation and characterization of three fluorescent labels for proteins, suitable for structural studies. Anal. Biochem. 209, 9-14.
  • 32. Corric, J.E.T. (1994) Thiol-reactive fluores­cent probes for protein labeling. J. Chem. Soc. Perkin Trans. I, 2975-2982.
  • 33. Waggogner, A. (1995) Covalent labeling of protein and nucleic acid with fluorofores. Methods Enzymol. 246, 363-373.
  • 34. Haugland, R.P. (1996) Handbook of Fluores­cent Probes and Research Chemical. Molecu­lar Probes, 6th edn.
  • 35. Cantor, C.R. & Pechukas, P. (1971) Determi­nation of distance distribution functions by singlet-singlet energy transfer. Proc. Natl. Acad. Sci. U.S.A. 68, 2099-2101.
  • 36. Gryczynski, I., Wiczk, W., Johnson, M.L., Cheung, H.C., Wang, C. & Lakowicz, J.R. (1988) Resolution of the end-to-end distance distribution of flexible molecules using quenching-induced variations Forster dis­tance for fluorescence energy transfer. Bio- phys. J. 54, 577-586.
  • 37. Wiczk, W.t Eis, P.S., Fishman, M.N. .Johnson, M.L. & Lakowicz, J.R. (1991) Distance distri­butions recovered from steady-state fluores­cence measurements on thirteen donor-ac­ceptor pairs with different Forster distance. ,1. Fluorescence 1, 273-286.
  • 38. Gryczynski, I., Wiczk, W., Johnson, M.L. & Lakowicz, J.R. (1988) End-to-end distance distributions of flexible molecules from steady state fluorescence energy transfer and quenching-induced changes in the Forster distance. Chem. Phys. Lett. 145. 439^446.
  • 39. Wiczk, W., Gryczynski, I., Szmacinski, II., Johnson, M.L., Kruszyński, M. & Zboinska, J. (1988) Distribution of distances in thiopep- tides by fluorescence energy transfer and fre­quency-domain fluorometry. Biophys. Chem. 32, 43-49.
  • 40. Szmacinski, H., Wiczk, W., Fishman, M.N., Eis, P.S., Lakowicz, J.R. & Johnson, M.L. (1996) Distance distributions from the lyrosyl to disulfide residues in oxytocin and [Arg8]- vasopressin measured using frequency-do­main fluorescence resonance energy transfer. Eur. Biophys. J. 24, 185-194.
  • 41. Eis, P.S. & Lakowicz, J.R. (1993) Time-re­solved energy transfer measurements of do­nor-acceptor distance distribution and intra­molecular flexibility of CCIIH zinc finger pep­tide. Biochemistry 32. 7981-7993.
  • 42. Lakowicz, J.R., Gryczynski, I., Wiczk, W., Laczko, G., Prendergast, F.C. & Johnson, M.L. (1990) Conformational distributions of melittin in water-methanol mixtures from frequency-domain measurements of non-ra- diative energy transfer. Biophys. Chem. 36, 99-115.
  • 43. Beals. J.M., Haas, E., Krausz, S. & Scheraga, H.A. (1991) Conformational studies of a pop- tide corresponding to a region of the C-termi- nus of ribonuclease A: Implication as a poten­tial chain-folding initiation site. Biochemistry 30. 7680-7692.
  • 44. Haas, E., Wilchek, M.f Katchalski-Katzir, E. & Steinberg, I.Z. (1975) Distribution of end- to-end distances of oligopeptides in solution as estimated by energy transfer. Proc. Natl. Acad. Sci. U.S.A. 72, 1807-1811.
  • 45. Cheung, H.C., Gryczynski, I., Malak, H., Wiczk, W., Johnson, M.L. & Lakowicz, J.R. (1991) Conformational flexibility of the Cys 697-Cys 707 segment of myosin subfragment- l: Distance distribution by frequency-domain fluorometry. Biophys. Chem. 40, 1-17.
  • 46. Amir, D. & Haas, E. (1986) Determination of intramolecular distance distribution in a globular protein by nonradiative excitation energy transfer measurements. Biopolymers 25, 235-240.
  • 47. Gottfried, D.S. & Haas, E. (1992) Nonlocal interaction stabilize folding intermediates in reduced unfolded bovine pancreatic trypsin inhibitor. Biochemistry 31, 12353-12362.
  • 48. Lakowicz, J.R.» Gryczynski, I., Cheung, II.C. & Wang, C. (1988) Distance distribution in native and random-coiled troponin J from fre­quency-domain measurements of fluores­cence energy transfer. Biopolymers 27, 821- -830.
  • 49. Cheung, H.C., Wang, C.f Gryczynski, I., Wiczk, W., Laczko, G., Johnson, M.L. & Lak­owicz, J.R. (1991) Distance distributions and anisotropy decays of troponin C and its com­plex with troponin I. Biochemistry 30, 5238-5247.
  • 50. Wu, P.G., James, E. & Brand, L. (1993) Com­pact thermally-denaturated state of a staphy­lococcal nuclease mutant from resonance en­ergy transfer measurements. Biophys. Chem. 46, 123-133.
  • 51. James, E., Wu, P.G., Stites, W. & Brand, L. (1992) Compact denaturated state of a staphylococcal nuclease mutant by guani- dinium as determined by resonance energy transfer. Biochemistry 31, 10217-10225.
  • 52. McWherter, CA., Haas, E., Leed, A.R. & Scheraga, H.A. (1986) Conformational unfold­ing in the N-terminal region of ribonuclease A detected by nonradiative energy transfer. Biochemistry 25, 1951-1963.
  • 53. Haas, E., McWherter, C.A. & Scheraga, H.A. (1988) Conformational unfolding in the N-ter- minal region of ribonuclease A detected by nonradiative energy transfer: Distribution of interresidue distance in the native, denatu­rated, and reduced-dcnaturated states. Biopolymers 27, 1-21.
  • 54. Rice, K.G., Wu, P., Brand. L. & Lee, Y.C. (1991) Interterminal distance and flexibility of a triantennary glycopeptide as measured by resonance energy transfer. Biochemistry 30, 6646-6655.
  • 55. Wu, P., Rice, K G., Brand. L. & Lee, Y.C. (1991) Differential flexibility in three branches of an N-linked triantennary gly­copeptide. Proc. Natl. Acad. Sci. U.S.A. 88, 9355-9359.
  • 56. Maliwal, B.P., Kusba, J., Wiczk, W., Johnson, M.L. & Lakowicz. J.R. (1993) End-to-end dif­fusion coefficients and distance distributions from fluorescence energy transfer measure­ments: Enhanced resolution by using multi­ple acceptors with different Forster distances. Biophys. Chem. 46, 273-281.
  • 57. Lakowicz, J.R., Gryczynski, I., Kusba, J.f Wiczk. W., Szmacinski, H. & Johnson, M.L. (1994) Site-to-site diffusion in proteins as ob­served by energy transfer and frequency-do­main fluorometry. Photochem. Photobiol. 59. 16-29.
  • 58. Lakowicz, J.R., Kusba, J. & Wiczk, W. (1990) Influence of end-to-end diffusion on intra­molecular energy transfer as observed by fre­quency-domain fluorometry. Biophys. Chem. 38, 99-109.
  • 59. Dale, R.E. & Eisinger, J. (1974) Intramolecu­lar distances determined by energy transfer. Dependence on orientational freedom of donor and acceptor. Biopolymers 13, 1573-1605.
  • 60. Dale, R.E., Eisinger, J. & Blumberg, W.E. (1979) The orientational freedom of molecular probes. The orientation factor in intramolecu­lar energy transfer. Biophys. J. 26, 161-194.
  • 61. Censullo, R., Martin, J.C. & Cheung, H.C. (1992) The use of isotropic orientation factor in fluorescence energy transfer (FRET) stud­ies of the actin filament. J. Fluorescence 2, 141-155.
  • 62. Haas, E. & Katchalski-Katzir, E. (1978) Effect of the orientation of donor and acceptor on the probability of energy transfer involving elec­tronic transition of mixed polarization. Bio­chemistry 17, 5064-5070.
  • 63. Horrocks. W.DeW., Jr. (1993) Luminescence spectroscopy. Methods Enzymol. 226, 495- -538.
  • 64. Lakowicz, J.R., Gryczynski, I., Wiczk, W., Laczko, G., Prendergast, F.C. & Johnson, M.L. (1990) Conformational distributions of melittin in water-methanol mixtures from frequency-domain measurements of non-ra­diative energy transfer. Biophys. Chem. 36. 99-115.
  • 65. Guillard, R. & Englert, A. (1976) Interpreta­tion of energy-transfer experiments by theo­retical studies of model compounds using semiempirical potential functions. I. Three- linked aromatic peptide unit. Biopolymers 15, 1301-1314.
  • 66. Leclerc, M„ Premilat, S. & Englert, A. (1978) Nonradiative energy transfer in oligopeptide chain generated by a Monte Carlo method including long-range interactions. Biopolym­ers 17, 2459-2473.
  • 67. Ixiclerc, M., Premilat, S., Guillard, R., Renne- boog-Squilbin, C. & Englert, A. (1977) Inter­pretation of energy transfer experiments by theoretical studies of model compounds using semiempirical potential functions. II. Monte Carlo calculations on oligopeptides. Biopo­lymers 16, 531-544.
  • 68. Steinberg, I.Z. (1968) Nonradiative energy transfer in systems in which rotatory Brownian motion is frozen. J. Chem. Phys. 48, 2411-2413.
  • 69. Steinberg, I.Z, Haas, E. & Katchalski-Katzir. E. (1983) Long-range nonradiative transfer of electronic excitation energy; in Time-resolved Fluorescence Spectroscopy in Biochemistry and Biology (Cundall, R.B. & Dale, R.B., eds.) vol. 69, pp. 411-450, Plenum Press, New York.
  • 70. Wu, P. & Brand, L. (1992) Orientation factor in steady-state and time-resolved resonance energy transfer measurements. Biochemistry 31, 7939-7947.
  • 71. Eis, P.S. & Millar, D P. (1993) Conformational distributions of a four-way DNA junction re­vealed by time-resolved fluorescence reso­nance energy transfer. Biochemistry 32, 13852-13860.
  • 72. Lakowicz, J.R., Gryczynski, I., Wiczk, W., Kusba, J. & Johnson, M.L. (1991) Correction for incomplete labeling in distance distribu­tions determined by frequency-domain fluorometry. Anal. Biochem. 195, 243-254.
  • 73. Lakowicz, J.R., Kusba, J., Szmacinski, H., Gryczynski, I., Eis, P.S., Wiczk, W. & Johnson, M.L. (1991) Resolution of end-to-end diffusion coefficients and distance distribu­tions of flexible molecules using fluorescent donor-acceptor and donor-quencher pairs. Biopolymers 31, 1363-1378.
  • 74. Horrocks, W.DeW., Jr., Holmquist, B. & Vallee, B.L. (1975) Energy transfer between terbium (III) and cobalt (II) in thermolysin: A new class of metal-metal distance probes. Proc. Natl. Acad. Sci. U.S.A. 72, 4764-4768.
  • 75. Matthews, B.W., Weaver, L.H. & Kester, W.R. (1974) The conformation of thermolysin. J. Biol. Chem. 249, 8030-8044.
  • 76. Horrocks, W.DeW., Jr. & Tingey, J.M. (1988) Time-resolved europium (III) luminescence excitation spectroscopy: Characterization of calcium-binding sites of calmodulin. Biochem­istry 27, 413-419.
  • 77. Babu, Y.S., Bugg, C.E. & Cook, W.J. (1988) Structure of calmodulin refined at 2.2 A reso­lution. J. Mol. Biol. 204, 191 -204.
  • 78. Snider, A.P., Sudnick, D.R., Arkle, V.K. & Horrocks, W.DoW., Jr. (1981) Lanthanide ion luminescence probes. Characterization of metal ion binding sites and intermctal energy transfer distance measurements in calcium- binding proteins. 2. Thermolysin. Biochemis­try 20, 3334-3339.
  • 79. Rhee, M.-J., Sudnick, D.R., Arkle, V.K. & Horrocks, W.DeW., Jr. (1981) Lanthanide ion luminescence probes. Characterization of metal ion binding sites and intermetal energy transfer distance measurements in calcium- binding proteins. 1. Parvalbumin. Biochem­istry 20, 3328-3334.
  • 80. Rhee, M.-J., Horrocks, W.DeW., Jr. & Kosow, D.P. (1984) Laser-induced lanthanide lumi­nescence as a probe of metal ion-binding sites of human Factor Xa. J. Biol. Chem. 259, 7404-7408.
  • 81. McWherter, C.A., Haas, E., Leed, A.R. & Scheraga, H.A. (1986) Conformational unfold­ing in the N-terminal region of ribonuclease A detected by nonradiative energy transfer. Biochemistry 25, 1951-1963.
  • 82. Borkakoti, N., Moss, D.S. & Palmer, R.A. (1982) Ribonuclease-A: Least-squares refine­ment of the structure at 1.45 A resolution. Acta Crystallogr., Sec. B: Struct. Crystallogr. Cryst. Chem. 38B, 2210-2217.
  • 83. Wlodawer, A.. Walter, J., Huber, R. & Sjolin, L. (1984) Structure of bovine pancreatic tryp­sin inhibitor. Results of joint neutron and X-ray refinement of crystal form II. J. Mol. Biol. 180. 301-329.
  • 84. Kabsch, W., Mannherz, H.G.. Suck, D.f Pai. F.F. & Holmes, K.C. (1990) Atomic structure of the actin-DNase I complex. Nature 347, 37-44.
  • 85. Miki. M., CDonoghue, S.I. & Dos Remedios, C.G. (1992) Structure of actin observed by fluorescence resonance energy transfer spec­troscopy. J. Muscle Res. Cell Motil. 13, 132- -145.
  • 86. O'Donoghue, S.I., Hambly, B.D. & Dos Re­medios, C.G. (1992) Models of actin monomer and filament from fluorescence resonance en­ergy transfer. Eur. J. Biochem. 205,591-601.
  • 87. McLaughlin, P.J., Gooch, P.J., Mannherz, H.G. & Weeds, A.G. (1993) Structure of gel- solin segment-1-actin complex and the mechanism of filament severing. Nature 364, 685-692.
  • 88. Schutt, C.E., Myslik, J.C., Rozycki. M.D., Goonesekere. N.C.W. & Lindberg, U. (1993) The structure of crystalline profilin-p-actin. Nature 365, 810-816.
  • 89. Lorenz, M., Popp, D. & Holmes, K.C. (1993) Refinement of the F-actin model against X- ray fiber diffraction data by the use of a directed mutation algorithm. J. Mol. Biol. 234. 826-836.
  • 90. Dos Remedios, C.G. & Moens, P.D.J. (1995) Actin and the actinomyosin interface. Bio- chim. Biophys. Acta 1228. 99-124.
  • 91. Lauterwcin, J., Brown, L.R. & Wiirtrich. K. (1980) High-resolution 1H-NMR studies of monomeric melittin in aqueous solution. Bio- chim. Biophys. Acta 622, 219-230.
  • 92. Bazzo, R., Tappin, M.J., Pastore, A., Harvey, T.S., Carver, J.A. & Campbell, D. (1988) The structure of melittin. A 1H-NMR study in methanol. Eur. J. Biochem. 173, 139-146.
  • 93. Brown, L.R. & Wütrich, K. (1981) Melittin bounded to dodecylphosphatocholine micel­les. 1H-NMR assigments and global confor­mational features. Biochim. Biophys. Acta 647, 95-111.
  • 94. Lakowicz, J.R., Gryczynski, I., Laczko, G., Wiczk, W. & Johnson. M.L. (1994) Distribu­tion of distances between tryptophan and the N-terminal residue of melittin in its complex with calmodulin, troponin C, and phos­pholipids. Protein Sci. 3, 628-637.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-3f545506-2356-49c1-bdc8-6c3ebed0dede
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.