PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 12 | 6 |

Tytuł artykułu

Signature lipid biomarker [SLB] analysis in determining changes in community structure of soil microorganisms

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Signature lipid biomarker (SLB) analysis is a useful tool for identifying microorganisms and character­izing microbial communities in natural systems. Specific fatty acids, especially phospholipids (PLFA), are es­sential membrane components, make up a relatively constant proportion of the microorganisms under natural conditions and their patterns provide insight into the bacterial and fungal community structure and biomass. This method is based on direct extraction of fatty acids from cultured bacteria or environmental samples and determining the isolated methyl ester fatty acids (FAME) using gas chromatography (GC). Several PLFAs are useful markers for the detection of the specific groups, and whole cell fatty acid analysis is used for routine identification of microbial species. The fatty acid analysis has been successfully applied for the characteriza­tion of microbial communities from agricultural soils, from sites contaminated with heavy metals, aromatic compounds, alkaline dust, acid rain and from other diverse habitats.

Wydawca

-

Rocznik

Tom

12

Numer

6

Opis fizyczny

p.669-675,fig.,ref.

Twórcy

  • University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
autor

Bibliografia

  • 1. FINNE G., MATCHES J.R. Spin-labeling studies on the lipids of psychrophilic and psychrotrophic, and mesophilic Clostridia. J. Bacteriol. 125, 211, 1976.
  • 2. RUSSEL N.J., FUKUNAGA N. A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol. Rev. 75, 171, 1990.
  • 3. ALBERTS S.V., VAN DE VOSSENBERG J.L., DRIESS- SEN A.J., KONINGS W.N. Adaptations of the archaeal cell membrane to heat stress. Front. Biosci. 5, D81, 2000.
  • 4. DENICH T.J., BEAUDETTE L.A., LEE H., TREVORS J.T. Effect of selected environmental and physicochemical factors on bacterial cytoplasmic membranes. J. Microbiol. Meth. 52, 149, 2003.
  • 5. FINEAN J.B., MITCHELL R.H. Isolation, composition and general structure of membranes. (in) Membrane Structure. (eds. J.B. Finean, R.H. Mitchell) Elsevier, New York, pp 19­25, 1981.
  • 6. MORGAN J.A.W., WINSTANLEY C. Microbial biomarkers. (in) Modern soil microbiology. (eds. J.D van Elsas, J.T. Trevors, E.M.H. Wellington) Marcel Dekker. Inc., New York, pp 331-348, 1997.
  • 7. HARWOOD J.L., RUSELL N.J. Lipids in plants and mi­crobes. George Allen and Unwin, London, 1984.
  • 8. HAMAMOTO T., TAKATA N., KUDO T., HORIKOSCHI K. Effect of temperature and growth phase on fatty acid composition of the psychrophilic Vibrio sp. strain 5710. FEMS Microbiol. Lett. 119, 77, 1994.
  • 9. LENNARZ W.J. Lipid metabolism in the bacteria. Adv. Lipid Res. 4, 175, 1966.
  • 10. FINDLAY R.H. The use of phospholipid fatty acid to determine microbial community structure. (in) Molecular microbial ecology manual. (eds A.D.L. Akkermans, J.D. van Elsas, F.J. de Bruijn) Kluwer Academic Publishers, Dordrecht, pp 1-18, 1996.
  • 11. WHITE D.C., RINGELBERG D.B. Utility of the signature lipid biomarker analysis in determining in situ viable bio­mass, community structure and nutritional/physiological status of deep subsurface microbiota (in) The Microbiology of the terrestrial deep subsurface. (eds. P. S Amy, D. Haldeman). LCRC Press, New York, pp 119-136, 1997.
  • 12. WHITE D.C., PINKARD H.C., RINGELBERG D.B. Bio­mass measurements: biochemical approaches. (in) Manual of environmental microbiology. (eds. C. J Hurst, G.R. Knud- sen, M.J. Mc Inerney, L.D. Stetzenbach., M.V. Valter) ASM Press, Washington, pp 91-101. 1997.
  • 13. BALKWILL D.L., LEACH F.R., WILSON J.T., MCNABB J.F., WHITE D.C. Equivalence of microbial biomass mea­sures based on membrane lipid and cell wall components, adenosine triphosphate, and direct count in subsurface aqui­fer sediments. Microbiol. Ecol. 16, 73, 1988.
  • 14. ZELLES L., BAI Q.Y., MA R.X., RACKWITZ R., WIN­TER K., BEESE F. Microbial biomass, metabolic activity and nutritional status determined from fatty acid patterns and polyhydroxybutyrate in agriculturally - managed soils. Soil Biol. Biochem. 26, 439, 1994.
  • 15. FROSTEGARD A., BAATH E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22, 59, 1996.
  • 16. WHITE D.C., DAVIS W.M., NICKELS J.S., KING J.D., BOBBIE R.J. Determination of sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40, 51, 1977.
  • 17. PARKER J.H., SMITH G.A., FREDRICKSON H.L., VES­TAL J.R., WHITE D.C. Sensitive assay, based on hydroxy fatty acids from lipopolysaccharide lipid A, for Gram-nega­tive bacteria in sediments. Appl. Environ. Microbiol. 44, 1170, 1982.
  • 18. HAACK S.K., GARCHOW H., ODELSON D.A., FORNEY L.J., KLUG M.J. Accuracy, reproducibility, and interpreta­tion of fatty acid methyl ester profiles of model bacterial communities. Appl. Environ. Microbiol. 60, 2483, 1994.
  • 19. RATLEDGE C., WILKINSON G. Microbial lipids. Aca­demic Press, London, 1988.
  • 20. ZELLES L. Fatty acid patterns of phospholipids and lipo- polysaccharides in the characterisation of microbial com­munities in soil: a review. Biol. Fertil. Soils 29, 111, 1999a.
  • 21. WHITE D.C. Is there anything else you need to understand about the microbionta that cannot be derived from analysis of nucleic acids? Microbiol. Ecol. 28, 163, 1994.
  • 22. WELLS G.B., DICKSON R.C., LESTER L.R. Isolation and composition of inositolphosphorylceramide-type sphingolipids of hyphal forms of Candida albicans. J. Bacteriol. 178, 6223, 1996.
  • 23. KELLY J.J., HAGGBLOM M., TATE III R.L. Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biol. Biochem. 31, 1455, 1999.
  • 24. HEDLUND K. Soil microbial community structure in rela­tion to vegetation management of former agricultural land. Soil Biol. Biochem. 34, 1299, 2002.
  • 25. EDLUND A., NICHOLS P.D., ROFFEY R., WHITE D.C. Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species. J. Lipid Res. 26, 982, 1985.
  • 26. DOWLING N.J.E., WIDDEL F., WHITE D.C. Phospho­lipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate reducers and other sulfide forming bacteria. J. Gen. Microbiol. 132, 1815, 1986.
  • 27. GUCKERT B., HOOD M.A., WHITE D.C. Phospholipid, ester-linked fatty acid profile changes in nutrient deprivation of Vibrio cholerae. Increase in the trans/cis ratio and propor­tions of cyclopropyl fatty acids. Appl. Environ. Microbiol. 52, 794, 1986.
  • 28. NICHOLS P.D., MANCUSO C.A., WHITE D.C. Measure­ment of methanotroph and methanogen signature phospholipids for use in assessment of biomass and community structure in model system. Org. Geochem. 11, 451, 1987.
  • 29. RINGELBERG D.B., TOWNSEND T., DEWAARD K.A., SUFLITA J.M., WHITE D.C. Detection of the anaerobic dechlorinator Desulfomonile tiedjei in soil by its signature lipopolysaccharide branched-long-chain hydroxy fatty ac­ids. FEMS Microbiol. Ecol. 14, 9, 1993.
  • 30. KERGER B., NICHOLS P.D., ANTWORTHT C.P, SAND W., BOCK E., COKS J.C., LANGWORTHY T.A., WHITE D.C. Signature fatty acids in the polar lipids of acid-produc­ing Thiobacilli: methoxy, cyclopropyl, alpha-hydroxy-cy- clopropyl and branched and normal monoenoic fatty acids. FEMS Microbiol. Ecol. 38, 67, 1986.
  • 31. CAVIGELLI M.A., ROBERTSON G.P., KLUG M.J. Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure. Plant Soil 170, 99, 1995.
  • 32. ZELLES L. Identification of single cultured micro-organ­isms based on their whole-community fatty acid profiles, using an extanded extraction procedure. Chemosphere 39, 665, 1999b.
  • 33. PENNANEN T., PERKIOMAKI J., KIIKKILA O., VAN- HALA P., NEUVONEN S., FRITZE H. Prolonged, simu­lated acid rain and heavy metal deposition: separated and combined effects on forest soil microbial community struc­ture. FEMS Microbiol. Ecol. 27, 291, 1998.
  • 34. FROSTEGARD A., TUNLID A., BAATH E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol. 59, 3605, 1993.
  • 35. FROSTEGARD A., TUNLID A., BAATH E. Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biol. Biochem. 28, 55, 1996.
  • 36. OLSSON P.A. Signature fatty acids provide tools for deter­mination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol. Ecol. 29, 303, 1999.
  • 37. HAZEL J.R., WILIAMS E.E. The role of alteration in mem­brane lipid composition in enabling physiological adapta­tion of organisms to their physical environment. Prog. Lipid Res. 29, 167, 1990.
  • 38. SAJBIDOR J. Effects of some environmental factors on the content and composition of microbial membrane lipids. Crit. Rev. Biotechnol. 17, 87, 1997.
  • 39. SEGURA A., DUQUE E., MASQUEDA G., RAMOS J.L., JUNKER F. Multiple responses of Gram-negative bacteria to organic solvents. Environ. Microbiol. 1, 191, 1999.
  • 40. RAMOS J.L., GALLEGOS M.T., MARQUES S., RAMOS- GONZALES M.I., ESPINOSA-URGEL M., SEGURA A. Responses of Gram-negative bacteria to certain environ­mental stressors. Curr. Opin. Microbiol. 4, 166, 2001.
  • 41. CRONAN J.E. Phospholipid alterations during growth of Escherichia coli. J. Bacteriol. 95, 2054, 1968.
  • 42. WHITE D.C. Analysis of microorganisms in terms of quan­tity and activity in natural environments. Symp. Soc. Gen. Microbiol. 34, 37, 1983.
  • 43. KIEFT T.L., RINGELBERG D.B., WHITE D.C. Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous me­dium. Appl. Environ. Microbiol. 60, 3292, 1994.
  • 44. HEIPIEPER H.J., WEBER F.J., SIKKEMA J., KEWELOH H., DE BONT J.A.M. Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 12, 409, 1994.
  • 45. HEIPIEPER H.J., DIFFENBACH R., KEWELOH H. Con­version of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseu­domonas putida P8 from substrate toxicity. Appl. Environ. Microbiol. 58, 1847, 1992.
  • 46. HEIPIEPER H.J., LOFFELD B., KEWELOH H., DE BONT J.A.M. The cis/trans isomerisation of unsaturated fatty acids in Pseudomonas putida S12: an indicator for en­vironmental stress due to organic compounds. Chemosphere 30, 1041, 1995.
  • 47. HALVERSON L.J., FIRESTONE M.K. Differential effects of permeating and nonpermeating solutes on the fatty acid composition of Pseudomonas putida. Appl. Environ. Micro­biol. 66, 2414, 2000.
  • 48. SASSER M. Identification of bacteria by gas chromatog- raphy of cellular fatty acids. MIDI Technical Note 101. Microbial ID, Inc., Newark, DE, USA, 1990.
  • 49. TIGHE S.W., DE LAJUDIE P., DIPIETRO K., LIND­STROM K., NICK G., JARVIS B.D.W. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhi- zobium species using the Sherlock Microbial Identification System. Inter. J. Sys. Evol. Microbiol. 50, 787, 2000.
  • 50. BUYER J.S. Identification of bacteria from single colonies by fatty acid analysis. J. Microbiol. Meth. 48, 259, 2002.
  • 51. THOMPSON I.P., Ellis R.J., BAILEY M.J. Autecology of a genetically modified fluorescent pseudomonad on a sugar beet. FEMS Microbiol. Ecol. 17, 1, 1995.
  • 52. PETERSEN S.O., KLUG M. Effects of sieving, storage, and incubation temperature on the phospholipid fatty acid profile of a soil microbial community. Appl. Environ. Mi­crobiol. 7, 2421, 1994.
  • 53. NAZIH N., FINLAY-MOORE O., HARTEL P.G., FUHRMANN J.J. Whole soil fatty acid methyl ester (FAME) profiles of early soybean rhizosphere as affected by temperature and matric water potential. Soil Biol. Biochem. 33, 693, 2001.
  • 54. KOZDROJ J. Microflora of technogenous wastes character­ised by fatty acid profiling. Microbiol. Res. 155, 149, 2000.
  • 55. RAJENDRAN N., MATSUDA O., URUSHIGAWA Y., SIMIDU U. Characterization of microbial community structure in the surface sediment of Osaka Bay, Japan, by phospholipid fatty acid analysis. Appl. Environ. Microbiol. 60, 248, 1994.
  • 56. BAATH E., FROSTEGARD A., FRITZE H. Soil bacterial biomass, activity, phospholipid fatty acid pattern, and pH tolerance in an area polluted with alkaline dust deposition. Appl. Environ. Microbiol. 58, 4026, 1992.
  • 57. MACNAUGHTON S.J., STEPHEN J.R., VENOSA A.D., DAVIS G.A., CHANG Y.J., WHITE D.C. Microbial popu­lations changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65, 3566, 1999.
  • 58. RINGELBERG D.B., TALLEY J.W., PERKINS E.J., TUCKER S.G., LUTHY R.G., BOUWER E.J., FRED- RICKSON H.L. Succession of phenotypic, genotypic, and metabolic community characteristics during in vitro bio- slurry treatment of polycyclic aromatic hydrocarbon-con­taminated sediments. Appl. Environ. Microbiol. 67, 1542, 2001.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-3eef8db8-80f6-44a6-a470-2f9ec817e471
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.