PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 56 | 2 |

Tytuł artykułu

Molecular analysis of temporal changes of a bacterial community structure in activated sludge using denaturing gradient gel electrophoresis [DGGE] and fluorescent in situ hybridization [FISH]

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Wastewater treatment based on activated sludge is known to be one of the most effective and popular wastewater purification methods. An estimation of microbial community variability in activated sludge allows us to observe the correlation between a particular bacterial group's appearance and the effectiveness of the removal of chemical substances. This research is focused on microbial community temporal changes in membrane bioreactors treating wastes containing a high level of ammonia nitrogen. Samples for this study were collected from two membrane bioreactors with an activated sludge age of 12 and 32 days, respectively. The activated sludge microbial community was adapted for the removal of ammonia nitrogen up to a level of 0.3 g NH₄⁺-N g/VSS/d (VSS - volatile suspended solids). The methods - denaturing gradient gel electrophoresis (DGGE) based on 16S rRNA gene PCR products and fluorescent in situ hybridization (FISH) with 16S rRNA gene probes - revealed significant differences in the microbial community structure in the two bioreactors, caused mainly by a difference in sludge age. According to the results obtained in this study, a bioreactor with a sludge age of 12 days is characterized by a much higher microbial community diversity than a bioreactor with a sludge age of 32 days. Interestingly, the appearance of particular species of nitrifying bacteria was constant throughout the experiment in both bioreactors. Changes occured only in the case of the Nitrosomonas oligotropha lineage bacteria. This study demonstrates that the bacterial community of bioreactors operating with different sludge ages differs in total community structure. Nevertheless, the changeability of the bacterial community structure did not have any influence on the efficiency of nitrification.

Wydawca

-

Rocznik

Tom

56

Numer

2

Opis fizyczny

p.119-127.fig.,ref.

Twórcy

autor
  • The Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
autor
autor
autor

Bibliografia

  • Adamczyk J., M. Hesselsoe, N. Iversen, M. Horn, A. Lehner, P.H. Nielsen, M. Schloter, P. Roslev. and M. Wagner. 2003. The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl. Environ. Microbiol. 69: 6875-6887.
  • Amann R.I., B.J. Binder, R.J. Olson, S.W. Chisholm, R. Devereux and D.A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56: 1919-1925.
  • Amann R. and M. Kuhl. 1998. In situ methods for assessment of microorganisms and their activities. Curr Opin Microbiol. 1 : 352-358.
  • Blackall L.L., S. Rossetti, C. Christenson, M. Cunningham, P. Hartman, P. Hugenholtz and V. Tandoi. 1997. The characterization and description of representatives of 'G' bacteria from activated sludge plants. Lett. Appl. Microbiol. 25: 63-69.
  • Bodzek M., J. Bohdziewicz and K. Konieczny. 1997. Membrane techniques in the environmental protection (in Polish). Wydawnictwo Politechniki Śląskiej, Gliwice.
  • Chain P., J. Lamerdin, F. Larimer, W. Regala, V. Lao V., M. Land, L. Hauser, A. Hooper, M. Klotz, J. Norton, L. Saya-vedra-Soto, D. Arciero, N. Hommes, M. Whittaker and D. Arp. 2003. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea.J. Bacterial. 85: 2759-2773.
  • Charcosset C. 2006. Membrane process in biotechnology: an overview. Biotechnol. Adv. 24: 482-492.
  • Curtis T.P. and N.G. Craine. 1998. The comparison of the diversity of activated sludge plants. Wat. Sci. Technol. 37: 71-78.
  • Daims H., J.L. Nielsen, P.H. Nielsen, K.H. Schleifer and M. Wagner. 2001a. In situ characterization of Nitrospira-Wke nitrite-oxidizing bacteria active in wastewater treatment plants. Appl. Environ. Microbiol. 67: 5273-5284.
  • Daims H., A. Brühl, R. Amann, K.H. Schleife and M. Wagner. 1999 The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: Development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22: 434-444.
  • Daims H., U. Purkhold, L. Bjerrum, E. Arnold, P.A. Wilderer. and M. Wagner. 2001b. Nitrification in sequencing batch bio-film reactors: lessons from molecular approach. Wat. Sci. Technol. 43: 9-18.
  • Daims H., K. Stoecker. and M. Wagner. 2005. Fluorescence in situ hybridization for the detection of prokaryotes, pp: 213-239. In: Osborn A.M. and C.J. Smith (eds), Advanced Methods in Molecular Microbial ecology. Bios-Garland. Abingdon, UK.
  • Duddleston K.N., P.J. Bottomley, A. Porter and D.J. Arp. 2000. Effects of soil and water content on methyl bromide oxidation by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 66: 2636-2640.
  • Eichner C.A., R.W. Erb, K.N. Timmis. and I. Wagner-Dobler. 1999. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shock in the activated sludge microbial community. Appl. Environ. Microbiol. 65: 102-109.
  • Felske A., B. Engelen., U. Nübel and H. Backhaus. 1996. Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl. Environ. Microbiol. 62: 4162-4167.
  • Hermanowicz W. and J. Dojlido. 1999. Physical and Chemical Methods in Water and Wastewater Analysis (in Polish). Arkady, Warszawa.
  • Holben W.E, K. Noto, T. Sumino. and Y. Suwa. 1998. Molecular analysis of bacterial communities in a three-compartment granular activated sludge system indicates community-level control by compatible nitrification processes. Appl. Environ. Microbiol. 64: 2528-2532.
  • Hommes N.G., L.A. Sayavedra-Soto and D.J. Arp. 2001. Transcript analysis of multiple copies of amo (encoding ammonia mono-oxygenase) and hao (encoding hydroxylamine oxidoreductase) in Nitrosomonas europaea. FEMS Microbiol. Ecol. 43: 195-206. ISO regulation: ISO 7890-1.
  • Juretschko S., G. Timmermann, M. Schmid, K.H. Schleifer, A. Pommerening-Róser, H.P. Koops and M. Wagner. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol. 64: 3042-3051.
  • Kelly J.J., S. Siripong., J. McCormack, L.R. Janus, H. Urakawa, S. El Fantroussi, P.A. Noble, L. Sappelsa., B.E. Rittmann and D.A. Stahl. 2005. DNA microarray detection of nitrifying bacterial 16S rRNA in wastewater treatment plant samples. Water Res. 39: 3229-3238.
  • Kowalchuk G.A., J.R. Stephen, W. De Boer, J.I. Prosser, T.M. Embley. and J.W. Woldendorp. 1997. Analysis of ammonia-oxidizing bacteria of the P subdivision of the class Proteo-bacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63: 1489-1497.
  • Loy A., M. Horn and M. Wagner. 2003. ProbeBase - an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Res. 31: 514-516.
  • Luxmy B.S., F. Nakajima and K. Yamamoto. 2000. Analysis of bacterial community in membrane-separation bioreactors by fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) techniques. Wat. Sci. Technol. 41: 259-268.
  • Metcalf and Eddy inc. 1991. Wastewater Engineering: Treatment, Disposal and Reuse, 3rd ed. McGrow - Hill Inc., New York.
  • Mobarry B.K., M. Wagner, V. Urbain, B.E. Rittmann and D.A. Stahl. 1996. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62: 2156-2162.
  • Nübel U., F. Garcia-Pichel, M. Kuhl and G. Muyzer. 1999. Quantify microbial diversity: morphotypes, 16S rRNA genes and carotenoids of oxygenic phototrophs in microbial mats, Appl. Environ. Microbiol. 62: 422-430.
  • Polish regulation: PN-C-04576-4:1994.
  • Pommerening-Röser A., G. Rath and H.P. Koops. 1996. Phylogenetic diversity within the genus Nitrosomonas. Syst. Appl. Microbiol. 19: 344-351.
  • Possemiers S.,K. Verthe, S. Uyttendaele and W. Verstraete. 2004. PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol. Ecol. 49: 495-507.
  • Rowan A.K., J.R. Snape, D. Fearnside, M.R. Barer, T.P. Curtis and I.M. Head. 2003. Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol. Ecol., A3: 195-206.
  • Schramm A., D. de Beer., M. Wagner and R. Amman. 1998 Identification and activity in situ of Nitrosospira and Nitrospira sp. as dominant populations in a nitrifying fluidized bed reactor. Appl. Environ. Microbiol. 67: 1351-1362.
  • Schuppler M., M. Wagner, G. Schon and U.B. Gobel. 1998. In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes. Microbiology 144: 249-259.
  • Snaidr J., R. Amann, I. Huber, W. Ludwig. and K.H. Schleifer. 1997. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol. 63: 2884-2889.
  • Sponza D.T. 2002. Extracellular polymer substances and physico-chemical properties of floes in steady- and unsteady-state activated sludge systems. Process Biochem. 37: 983-998.
  • Sponza D.T. 2003. Investigation of extracellular polymer substances (EPS) and physicochemical properties of different activated sludge floes under steady-state conditions. Enzyme Microb. Technol. 32: 375-385.
  • Van der Gast Ch.J., B. Jefferson, E. Reid, T. Robinson, M.J. Bailey, S.J. Judd and LP. Thompson. 2006. Bacterial diversity is determined by volume in membrane bioreactors. Envimn. Microbiol. 8: 1048-1055.
  • Wagner M., G. Rath, R. Amann, H.P. Koops and H.K. Schleifer. 1995. In situ identification of ammonia-oxidizing bacteria. Syst. Appl. Microbiol. 18: 251-264.
  • Wagner M., G. Rath, H.P. Koops and H.K. Schleifer. 1996. In situ identification of nitrifying bacteria in sewage treatment plants. Wat. Sci. Tech. 34: 237-244.
  • Wittebolle L., N. Boon, B. Vanparys, K. Heylen K., P. De Vos. and W. Verstraete. 2005. Failure of the ammonia oxidation process in two pharmaceutical wastewater treatment plants is linked to shifts in the bacterial communities. J. Appl. Microbiol. 99: 997-1006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-3d0c17bd-91de-43d8-bd6e-02b2d4aac0e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.