Adaptive (starvation-associated) mutations occur in non-dividing cells and allow growth under the selective conditions imposed. We developed a new method for the determination of adaptive mutations in Escherichia coli. The system involves reversion to prototrophy of the argE3OC mutation and was tested on AB1157 strains mutated in the mutT and/or mutY genes. The bacteria that mutated adaptively grow into colonies on minimal medium plates devoid of arginine (starvation conditions) when incubated longer than 4 days. Using the replica plating method we solved the problem of discrimination between growth-dependent and adaptive argE3Arg+ revertants. Phenotype analysis and susceptibility of the Arg+ revertants to a set of T4 phage mutants create an additional possibility to draw a distinction between these two types of Arg+ revertants.
6. Foster, P.L. (1997) Nonadaptive mutations occur on the F' episome during adaptive mutation conditions in Escherichia coli. J. Bacteriol. 179, 1550-1554.
7. Foster, P.L. & Trimarchi, J.M. (1995) Adaptive reversion of an episomal frameshift mutation in Escherichia coli requires conjugal functions but not actual conjugation. Proc. Natl. Acad. Sci. U.S.A. 92, 5487-5490.
8. Rosenberg, S.M., Longerich, S., Gee, G. & Harris, R.S. (1994) Adaptive mutation by deletion in small mononucleotide repeats. Science 265, 405-407.
9. Foster, P.L. & Trimarchi, J.M. (1994) Adaptive reversion of a frameshift mutation in Escherichia coli by simple base substitutions in homopolymeric runs. Science 265, 407-409.
10. Bridges, B.A. (1993) Spontaneous mutation in stationary-phase Escherichia coli WP2 carrying various DNA repair alleles. Mutation Res. 302, 173-176.
11. Au, K.G., Clarke, G.S., Miller, J.H. & Modrich, P. (1989) Escherichia colimutYgene encodes an adenine glycosylase active on G-A mispairs. Proc. Natl. Acad. Sci. U.S.A. 86, 8877-8881.
12. Bridges, B.A. (1996) Elevated mutation rate in mutT bacteria during starvation: evidence for DNA turnover? J. Bacteriol. 178, 2709-2711.
13. Miller, J.H. (1972) Experiments in Molecular Genetics, pp. 56-59, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
14. Bachmann, B.J. (1987) Derivations and genotypes of some mutant derivatives of Escherichia coli K-12; in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhard, F.C., Ingraham, J., Low, K.B., Magasanik, B., Schaechler, M. & Umbarger, H.E., eds.) vol. 2, pp. 1190-1219, American Society for Microbiology, Washington D.C.
15. Wojcik, A., Grzesiuk, E., Tudek, B. & Janion, C. (1996) Conformation of plasmid DNA from Escherichia coli deficient in the repair systems protecting DNA from 8-oxoguanine lesions. Biochimie 78, 85-89.
16. Vogel, H.J. & Bonner, D.M. (1956) Acetyloornithinase of Escherichia coli: Partial purification and some properties. J. Biol. Chem. 218, 97-106.
18. Sledziewska-Gojska, E., Grzesiuk, E., Plachta, A. & Janion, C. (1992) Mutagenesis of Escherichia coli: A method for determining mutagenic specificity by analysis of tRNA suppressors. Mutagenesis 7, 41-46.
19. Bridges, B.A. & Ereira, S. (1998) DNA synthesis and viability of a mutT derivative of Escherichia coli WP2 under conditions of amino acid starvation and relation to stationary phase (adaptive) mutation. J. Bacteriol. 180, 2906-2910.
20. Maki, H. & Sekiguchi, M. (1992) MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature 355, 273-275.
21. Nghiem, Y., Cabrera, M., Cupples, C.G. & Miller, J.H. (1998) The mutY gene: A mutator locus in Escherichia coli that generates G:CF255>T:A transversions. Proc. Natl. Acad. Sci. U.S.A. 85, 2709-2713.