PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 27 | 2 |

Tytuł artykułu

Optical properties and the content of photosynthetic pigments in the stems and leaves of the apple-tree

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Optical properties and changes in the content of photo synthetic pigments (chlorophyll and total carotenoids) were investigated in the bark and leaves of the apple-tree during a year. Optical properties of stems change with their age. Light reflectance of current year stems equalled 14.2 %, while the one for 3-year-old stems decreased to 10.2 %, absorption for the current year stems equalled 55.5 % and increased up to 66.4 % for 3-year-old ones. Light transmittance for the cork of current year stems equalled 30.2 %, and decreased with the age of stems reaching 23.4 % for the 3-year-old ones. The cork transmitted less than 5 % of light of 400 nm, but the transmittance increased with the increase in the wavelength up to 55 % at 700 nm. The reflectance of light by the leaf equalled 6.9 %, absorption 89.7 %, and transmittance 3.4 %. In August the highest amount of chlorophyll pigments (6.2 mg-dm-2) and carotenoids (1.63 mg-dm-2) was detected in the leaves of the apple-tree, however, the ratio of chl alb reached the highest value 4.12 in June. For the bark of apple-tree stems the content of chlorophyll pigments increased since spring and reached the maximum content of about 2.8 mg(chl)-dm-2 for 1-3-year-old stems in the summer months, while for the current year stems in October. The ratio chl alb was at the same level, about 2.2 during the whole year. The content of carotenoids was lower in stems than in leaves and was at the similar level during the year, however, it increased with the age of stems. Minor changes in the optical properties and the content of photosynthetic pigments occurring with the age of stems may be due to the low increment in cork thickness in the studied age groups of plants.

Wydawca

-

Rocznik

Tom

27

Numer

2

Opis fizyczny

p.183-191,fig.,ref.

Twórcy

autor
  • Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland
autor

Bibliografia

  • Barr M.L., Potter L.D. 1974. Chlorophyll and carotenoids in aspen bark (Populus tremuloides). The Southwestern Natur. 19: 147 - 154.
  • Bergweiler P., Lutz C. 1988. Altitude dependent variation of leaf pigments in alpine and lowland plant. Environ. Exp. Bot. 28: 188 - 192.
  • Brandt A.B., Tageeva S.V. 1967. Optical parameters of plant organisms. Nauka, Moskwa
  • Czarnowski M. 1994. Właściwości optyczne liści drzew i krzewów. Wiadomości Botaniczne 38: 47 - 55.
  • Czarnowski M., Cebula S. 1994a. Solar spectral irradiance in cultivated plants under cover in a submontane region. I. Cucumber plants in the greenhouse. Folia Hortic. VI/2: 3 - 14.
  • Czarnowski M., Cebula S. 1994b. So lar spectral irradiance in cultivated plants under cover in a submontane region. II. Tomato plants in the greenhouse. Folia Hortic. VI/2: 15 - 23.
  • Czarnowski M., Cebula S. 1994c. Solar spectral irradiance in cultivated plants under cover in a submontane region. III. Sweet pepper plants in the greenhouse. Folia Hortic. VI/2: 25 - 35.
  • Ewers F. W., Fisher J. B., Fichtner K 1991. Water flux and Xylem structure in vines. In: Putz FE, Mooney HA (eds) The Biology of Vines, Cambridge University, Cambridge, pp 127 - 160.
  • Gates D, Keegan H, J., Schleter J. C. 1965. Spectral properties of plants. Applied Optics 4: 11 - 20.
  • Gausman H W., Allen W. A., 1973. Optical parameters of leaves of 30 plant species. Plant Physiol. 52: 57 - 62.
  • Givnish T. 1995. Plants stems: biomechanical adaptation for energy capture and influence on species distribution. Gartner BL (ed.) Plant Stems: Physiology and Functional Morphology. Academic press, San Diego 3 - 49.
  • Gundersen K. 1954. Chlorophyll in young shoots of European Beech (Fagus silvatica) in winter. Nature 174: 87 - 89.
  • Kharouk V. I., Middleton E. M., Spencer S. L., Rock B. N., Williams D. L.1995. Aspen bark photosynthetsis and its significance to remote sensing and carbon budget estimates in the boreal ecosystem. Water, Air and Soil Pollut. 82: 483 - 497.
  • Kharouk V. I., Terskov I. A. 1982. Pigments in tree tissues. Nauka Russia.
  • Kriedeman P. E., Butrose M. S. 1971. Chlorophyll content and photosynthetic activity within woody shoots of Vitis Vinifera (L.). Photosynthetica 5: 22 - 27.
  • Larcher W., Lutz C., Nagelle M., Bodner M.1988. Photosynthetic funct ioni ng and ultrastructure of chloroplasts in stem tissue of Fagussylvatica. J. Plant Physiol. 132: 731 - 737.
  • Meyer S. 1990. untersuchungen zum chlorophyllgehalt der buchensprossachse. Thes is, University of Gottingen, Germany.
  • Pearson L. C. ,Lawrence D. B. 1958. Photosynthesis in aspen bark during winter months. Proc. Min. Acad. Sci. 26: 101 - 107.
  • Pfanz H., Aschan G. 2000. The existance of bark and stem photosynthesis in woody plants and ist significance for the overoll carbon gain. An eco-physSoSogscal and ecological approach. Progress in botany 62: 477 - 510.
  • Pfanz H., Ashan G., Langenfeld-Heyser R., Witmann C., Loose M. 2002. Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. Naturwissenschaften 89: 147 - 162.
  • Pilarski J. 1984. Content of chlorophyllous pigments in shoot bark and leaves in Syringa vulgaris L. Bul. Pol. Acad. Sci. Biol. Sci. 32: 415 - 423.
  • Pilarski J. 1989. Optical properties ofbark and leaves in Syringa vulgaris L. Bul. Pol. Acad. Sci. Biol. Sci. 37: 253 - 261.
  • Pilarski J. 1999. Gradient of photosynthetic pigments in bark and leaves of lilac (Syringa vulgaris L.). ). Bul. Pol. Acad. Sci. Biol. Sci. 4: 365 - 373.
  • Pilarski J. 2000. Photosynthetic activity of stems and leaves of appl, sweet cherry, and plum trees. Folia Horticulturae 12/1: 41 - 44.
  • Schmidt J., Batic F., Pfanz H. 2000. photosynthetic performance of leaves and twigs of everygreen holly (Ilex aquifolium L.). Phyton 40: 179 - 190.
  • Schultz H. R., Matthews M. A. 1993. Xylem development and hydraulic conductance in sun and shade shotts of grapevine. (Vitis vinifera L.) - evidence that low light uncouples water transport from leaf area. Planta 190: 393 - 406.
  • Shulgin I. A. 1967. Solar radiation and plant. Gidrometeoizdat, Leningrad.
  • Shulgin I. A. 1973. The plant and sun. Gidrometeoizdat, Leningrad.
  • Sieferman-Harms D 1987. The light-harvesting and protective function of carotenois in photo synthetic membrans. Physiol. Plant. 69: 561 - 568.
  • Solhaug D. G., Gauslaa Y., Haugen J. 1995. Adverse effects of epiphytic crustose lichens upon stem photosynthesis and chlorophyll of Populus tremula L. Bot Acta 108: 233 - 239.
  • Szujkó-Lacza J., Fekete G. 1970. Contribution to the conditions of photosynthesis activity of lignifying shoot axes. Acta Bot. Acad. Sci. Hung. 16: 393 - 404.
  • Szujkó-Lacza J., Rakovan J. N., Horvath G., Fekete G., Faludi-Daniel A. 1971. Anatomical, ultrastructural and physiological studies on one-year old Euonymus europaeus bark displaying photo synthetic activity. Acta Agron. Acad. Scien. Hungar. 20: 247 - 260.
  • Szujkó-Lacza J., Rakovan J. N., Fekete G., Horvath G. 1972. Anatomical ultrastructural and physiological studies on primary cortex of old Euonymus europaeu L. displaying photosynthtic activity II. Acta Agron. Acad. Scien. Hungar. 21: 41 - 56.
  • Wellburn A.R. 1994. The spectral determination of chlorophyll a and b as wall as total carotenoids using various solvents with spectrophotometers of different resolution. J. Plan Physiol. 144: 307 - 313.
  • Witmann C., Aschan G., Pfanz H. 2001. Leaf and twig photosynthesis of young beech (Fagus silvatica) and aspen (Populus tremula) trees grown under different light regimens. Basic Appl Ecol 2: 145 - 154.
  • Yamamoto H. Y. 1979. Biochemistry of the viola xanthin cycle in higher plants. Pure and App. Chem. 51: 339 - 348.
  • Young A.J., Phillip D., Savill J. Carotenoids in higher plant photosynthesis. M. Pessarakli (red.) Handbook of phoSosynthesis. Marcel Dekker, Inc. New York, Base Hong Kong, 575 - 596.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-article-3738b28b-ee48-48d9-a1c0-dbcff01f37ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.